186.868 Visual Data Science
Diese Lehrveranstaltung ist in allen zugeordneten Curricula Teil der STEOP.
Diese Lehrveranstaltung ist in mindestens einem zugeordneten Curriculum Teil der STEOP.

2020W, VU, 2.0h, 3.0EC
TUWEL
Diese Lehrveranstaltung wird nach dem neuen Modus evaluiert. Mehr erfahren

LVA-Bewertung

Merkmale

  • Semesterwochenstunden: 2.0
  • ECTS: 3.0
  • Typ: VU Vorlesung mit Übung
  • Format der Abhaltung: Distance Learning

Lernergebnisse

Nach positiver Absolvierung der Lehrveranstaltung sind Studierende in der Lage

  • verschiedene Techniken aus der Visualisierung und visuellen Analytik für die explorative Datenanalyse einzusetzen,
  • verschiedene Techniken aus der Visualisierung und visuellen Analytik für die Präsentation von Ergebnissen einzusetzen,
  • Techniken aus dem Bereich Human-Computer-Interaction (HCI) und Wahrnehmung zu verwenden um Visualisierungen zu verbessern, und
  • die Unterschiede zwischen verschiedenen aktuellen Softwarebibliotheken und Anwendungen zu verstehen.

Außerdem bietet die LVA die Möglichkeit eigene Daten zu analysieren.

Inhalt der Lehrveranstaltung

  • Der Vorlesungsteil beinhaltet eine theoretische Einführung in die Visualisierung, Visual Analytics, und Human-Computer-Interaction. Dies beinhaltet unter anderem eine Vorstellung aktueller Visualisierungslösungen für verschiedene Data Science Bereiche.
  • Im weiteren Verlauf werden in der Vorlesung praktische Anwendungen von Visualisierungslösungen erläutert.
  • Die Vorlesung behandelt auch die Unterschiede zwischen aktuellen Softwarelibraries und Applikationen.
  • Im praktischen Teil der VU werden von den Studenten selbst die Unterschiede zwischen statistischer und visueller Datenanalyse erarbeitet.
  • Der praktische Teil beinhaltet auch einen Vergleich zwischen ausgewählten Softwareapplikationen, und eine praktische Erarbeitung eines Dashboards zum Präsentieren von Analyseergebnissen.

Methoden

Vortrag mit Folien, Programmierbeispiele und Live-Demos.

Prüfungsmodus

Prüfungsimmanent

Weitere Informationen

Weitere Informationen finden Sie auf der LVA-Homepage (https://www.cg.tuwien.ac.at/courses/VisDataScience/).

ECTS-Breakdown:
3 ECTS = 75 Arbeitsstunden, davon
  55 Arbeitsstunden (73%) Übungsteil, und
  20 Arbeitsstunden (27%) Vorlesungsteil

Vortragende

Institut

LVA Termine

TagZeitDatumOrtBeschreibung
Mi.11:00 - 12:0007.10.2020 Zoom MeetingVorbesprechung
Mi.11:00 - 13:0021.10.2020 Zoom MeetingVorlesung 02
Mi.11:00 - 13:0028.10.2020 Zoom MeetingVorlesung 03
Mi.11:30 - 13:0004.11.2020 Zoom MeetingVorlesung 04
Mi.11:00 - 13:0011.11.2020 Zoom MeetingVorlesung 05
Mi.11:00 - 13:0018.11.2020 Zoom MeetingVorlesung 06
Mi.11:00 - 13:0025.11.2020 Zoom MeetingVorlesung 07
Mi.11:00 - 13:0009.12.2020 Zoom MeetingVorlesung 09
Mi.11:00 - 13:0016.12.2020 Zoom MeetingVorlesung 10

Leistungsnachweis

Die in der Vorlesung gelehrten Inhalte sollen in praktischen Übungsprojekten direkt angewandt werden.

LVA-Anmeldung

Von Bis Abmeldung bis
01.09.2020 00:00 30.11.2020 23:59 30.11.2020 23:59

Anmeldemodalitäten:

Die Anmeldung zur LVA kann über TISS oder TUWEL erfolgen.

Curricula

Literatur

Es wird kein Skriptum zur Lehrveranstaltung angeboten.

Vorkenntnisse

  • Data Science Grundlagen
  • Programmierkenntnisse
  • Wissen über Visualisierung von Vorteil

Vorausgehende Lehrveranstaltungen

Begleitende Lehrveranstaltungen

Vertiefende Lehrveranstaltungen

Weitere Informationen

Sprache

Englisch