Bitte warten...
Bitte warten...
English
Hilfe
Login
Forschungsportal
Suche
Forschungsprofile
Forschungsprojekte
Projektvollmacht
Lehre
Forschung
Organisation
Forschungseinheitenprofil
TU-Wien
>
Institut für Information Systems Engineering
>
Fakultät für Informatik
>
Institut für Information Systems Engineering
>
Forschungsbereich Machine Learning
E194-06
Forschungsbereich Machine Learning
Leitung
Univ.Prof. Dipl.-Ing.(BA) Dr.rer.nat. MSc Thomas Gärtner
Übersicht
Fachgebiete
Keywords
Leitbild (Deutsch)
Our research aims to narrow the gap between theoretically well-understood and practically relevant machine learning. Research questions concern for instance:
learning with non-conventional data, i.e., data that has no inherent representation in a table or Euclidean space
incorporation of invariances as well as expert domain knowledge in learning algorithms
computational, sample, query, and communication complexity of learning algorithms
constructive machine learning scenarios such as structured output prediction
learning with small labelled data sets and large unlabelled data sets
adverserial learning with mistake and/or regret bounds
parallelisation/distribution of learning algorithms
approximation of learning algorithms
scalability of learning algorithms
reliability of learning algorithms
extreme learning
...
To demonstrate the practical effectiveness of novel learning algorithms, we apply them in Chemistry, Material Science, Electrical Engineering, Computer Games, Humanities, etc.
Leitbild (Englisch)
Our research aims to narrow the gap between theoretically well-understood and practically relevant machine learning. Research questions concern for instance:
learning with non-conventional data, i.e., data that has no inherent representation in a table or Euclidean space
incorporation of invariances as well as expert domain knowledge in learning algorithms
computational, sample, query, and communication complexity of learning algorithms
constructive machine learning scenarios such as structured output prediction
learning with small labelled data sets and large unlabelled data sets
adverserial learning with mistake and/or regret bounds
parallelisation/distribution of learning algorithms
approximation of learning algorithms
scalability of learning algorithms
reliability of learning algorithms
extreme learning
...
To demonstrate the practical effectiveness of novel learning algorithms, we apply them in Chemistry, Material Science, Electrical Engineering, Computer Games, Humanities, etc.
Webseite
https://www.ml.tuwien.ac.at/
Personen
Titel
Nachname
Vorname
Associate Prof. Dr.in rer.nat.
Andergassen
Sabine
BSc
Blohm
Peter
Chen
Florian
Univ.Ass.in Dipl.-Ing.in
Drucks
Tamara
Associate Prof. Dr.techn. Dipl.-Ing.
Heitzinger
Clemens
Univ.Ass. MSc
Indri
Patrick
Univ.Ass. Dipl.-Ing. BSc
Jogl
Fabian
Kacmaz
Ülkühan
Karolyi
Marton
Projektass.(FWF) MSc
Khodadadian
Ehsan
Projektass.(FWF) Dr.rer.nat. MSc
Khodadadian
Amirreza
Projektass. MSc
Lüderssen
Sebastian Johannes
Univ.Ass. MSc PhD
Malhotra
Sagar
Assistant Prof. Dr.techn. BSc MSc
Neumann
Stefan
Projektass.in(FWF) Dr.in rer.nat. BSc MSc
Parvizi
Maryam
Univ.Ass.in Dott.mag.
Patricolo
Miriam
Projektass.(FWF) Dipl.-Ing. B.A.
Penz
David
Projektass. MSc
Petersen
Johannes Borg Sandberg
Univ.Ass. MSc
Sandrock
Christoph
Projektass. MSc
Thiessen
Maximilian
Trauner
Martina
Projektass. Dipl.-Ing.
Weinbauer
Klaus
BSc
Weiss
Richard
Projektass. Dr.rer.nat.
Welke
Pascal
BSc
aus der Schmitten
Jakob
F
P
1
N
E
Fachgebiete nach Statistik Austria
Code
Fachgebiet(Deutsch)
Fachgebiet(Englisch)
1122
Schlagwörter
Schlagwort (Deutsch)
Schlagwort (Englisch)
Maschinelles Lernen
Machine Learning
Data Mining
Data Mining