# 376.059 Control systems 1 This course is in all assigned curricula part of the STEOP.\$(function(){PrimeFaces.cw("Tooltip","widget_j_id_20",{id:"j_id_20",showEffect:"fade",hideEffect:"fade",target:"isAllSteop"});});This course is in at least 1 assigned curriculum part of the STEOP.\$(function(){PrimeFaces.cw("Tooltip","widget_j_id_22",{id:"j_id_22",showEffect:"fade",hideEffect:"fade",target:"isAnySteop"});}); 2020W 2019W 2018W 2017W 2016W 2015W 2014W 2013W

2019W, VO, 2.0h, 3.0EC

## Properties

• Semester hours: 2.0
• Credits: 3.0
• Type: VO Lecture

## Learning outcomes

After successful completion of the course, students are able to:

• identify dynamic systems by means of no-parametric and parametric identification methods.
• design optimal state observers (Kalman filter, extended Kalman filter, unscented Kalman filter).
• design optimal linear state controllers (LQR).
• understand and reproduce the mathematical methods required for the design of optimal state observers and controllers.

## Subject of course

non-parametric identification methods (transient response analysis, fourier analysis ETFE), basics of stochastics, parametric identification methods (least squares with and without stochastic perturbation), model structures for identification (ARMA, ARX, ARMAX), Recursive Least Squares (RLS) method, Least Mean Squares (LMS) concept, weighted least squares method, optimal estimation (Gauß-Markov estimation, Minimum-Variance estimation), optimal observer (Kalman-Filter), dynamic programming due to Bellman, Linear Quadratic Regulator (LQR) problem with finite and infinite time horizon, optimal output regulator (Linear Quadratic Gaussian (LQG) problem), separation principle for the optimal controller and observer design, advanced concepts of state-space control (feedforward of the estimated perturbation, state-space controller with integral part, servoproblem)

## Teaching methods

lecture, solution of examples during the lecture, independent solution of examples of the lecture notes by the students

Oral

## Course dates

DayTimeDateLocationDescription
Thu09:00 - 11:0003.10.2019 - 23.01.2020EI 10 Fritz Paschke HS - BI KEMMETMÜLLER
Control systems 1 - Single appointments
DayDateTimeLocationDescription
Thu03.10.201909:00 - 11:00EI 10 Fritz Paschke HS - BI KEMMETMÜLLER
Thu10.10.201909:00 - 11:00EI 10 Fritz Paschke HS - BI KEMMETMÜLLER
Thu17.10.201909:00 - 11:00EI 10 Fritz Paschke HS - BI KEMMETMÜLLER
Thu24.10.201909:00 - 11:00EI 10 Fritz Paschke HS - BI KEMMETMÜLLER
Thu31.10.201909:00 - 11:00EI 10 Fritz Paschke HS - BI KEMMETMÜLLER
Thu07.11.201909:00 - 11:00EI 10 Fritz Paschke HS - BI KEMMETMÜLLER
Thu14.11.201909:00 - 11:00EI 10 Fritz Paschke HS - BI KEMMETMÜLLER
Thu21.11.201909:00 - 11:00EI 10 Fritz Paschke HS - BI KEMMETMÜLLER
Thu28.11.201909:00 - 11:00EI 10 Fritz Paschke HS - BI KEMMETMÜLLER
Thu05.12.201909:00 - 11:00EI 10 Fritz Paschke HS - BI KEMMETMÜLLER
Thu12.12.201909:00 - 11:00EI 10 Fritz Paschke HS - BI KEMMETMÜLLER
Thu09.01.202009:00 - 11:00EI 10 Fritz Paschke HS - BI KEMMETMÜLLER
Thu16.01.202009:00 - 11:00EI 10 Fritz Paschke HS - BI KEMMETMÜLLER
Thu23.01.202009:00 - 11:00EI 10 Fritz Paschke HS - BI KEMMETMÜLLER

## Examination modalities

oral exam (online)

## Course registration

Begin End Deregistration end
03.09.2019 08:00 31.10.2019 23:00

Registration modalities:

The registration via TISS is used for administrative purposes only.

## Literature

Lecture Notes (in German) are available on the homepage of the institute. The link will be sent to the registered participants via News information.

## Previous knowledge

This course is based on the concepts taught in VU Automatisierung. Furthermore, basic knowledge in linear algebra and stochastics is strongly recommended.

German