After successful completion of the course, students are able to use and understand scattering parameters (S-parameters), use the Smith-chart to solve linear RF-problems, and understand basic RF-elements like attenuators, directional couplers, hybrids, circulators. Students will learn how to design matching networks for optimizing gain or noise figurre and unerstand the basic concepts of RF power amplifiers and their distinguation from small signal amplifiers. In the field of RF system design, students will be able to analyze the signal to noise ratio (SNR) of an entire RF receiver by level-planning, know the effects of nonlinearities (intermodulation), understand concepts of homodyne (direct conversion) and heterodyne receivers. Furthermore, students will learn the basics of analog/digital modulation formats and parameters to characterize modulation quality. Also, students will get a general understand of phase locked loop synthesizers and the effect of phase noise.
RF-Signals propagating along transmission lines; Scattering parameters; Linear two-ports; Nonlinearity and intermodulation; Transceiver; Nonlinear RF-Circuits, mixers, frequency conversion; Analog modulation formats; Digital RF-modulation formats and their spectra; RF-transmitters
The lecture is split into an oral presentation (most lectures) and exercises (six lectures). Before each exercise, students can hand in solved problems which will be discussed during the exercise. Most years, we also find time to have a demo with a spectrum analyzer to analyze the electromagnetic spectrums and/or devices brought be students.
Administrative issues concerning the lecture will be discussed in the first lecture on October 3, 2023, 9:15 AM.
Please note that also the lectures will start always at 9:15 AM.
The examples for the exercise part and course related materials can be found on the course homepage in TUWEL.
Attendence of the ongoing lecture is voluntary but highly recommended.For both, the multiple choice tests and the handed in examples with correct solutions, you will receive additional credits. At the oral exam, these bonus points will be added to those of the written exam, so that the final grade can be improved by max. one degree. If students do not hand in examples and do not attend the multiple choice tests, the final grade will be degraded by one degree.
Not necessary
The lecture notes will be available online.
Bachelor's degree in electrical engineering or equivalent knowledge is required.