# 309.022 Mechanics of solid bodies, exercises 2 This course is in all assigned curricula part of the STEOP.\$(function(){PrimeFaces.cw("Tooltip","widget_j_id_20",{id:"j_id_20",showEffect:"fade",hideEffect:"fade",target:"isAllSteop"});});This course is in at least 1 assigned curriculum part of the STEOP.\$(function(){PrimeFaces.cw("Tooltip","widget_j_id_22",{id:"j_id_22",showEffect:"fade",hideEffect:"fade",target:"isAnySteop"});}); 2022W 2021W 2020W 2019W 2018W 2017W 2017S 2016S 2015S 2014S 2013S 2012S 2011S 2010S 2009S 2008S 2007S 2006S 2005S 2004S 2003S 2002S

2022W, UE, 2.0h, 2.0EC

## Properties

• Semester hours: 2.0
• Credits: 2.0
• Type: UE Exercise
• Format: Hybrid

## Learning outcomes

After successful completion of the course, students are able to apply the basic concepts and laws of physics taught in the corresponding lecture to solve fundamental problems in rigid body dynamics. With the help of such mathematical solutions, students can obtain concrete statements about the behavior of the basic mechanical systems, control them with respect to plausibility and, if necessary, explain the validity of the solutions.

In particular, students are able to

• determine velocity and acceleration with respect to different systems of reference for any arbitrary point in a system of a kinematic chain with joints as a function of given coordinates and their derivatives and represent those quantities in vector form in different coordinate systems,
• determine the relationship between forces and motion using Newton's and Euler's principles for solid bodies; determine and solve the equations of motion for rigid body systems and investigate the constraining forces, determine the mechanical energy of a rigid-body system and use the relationship between energy, work and power to construct the equation of motion for systems with one degree of freedom,
• analyze the behavior of rotors and rotating machine parts, especially in connection with static and dynamic unbalance;
• apply the elementary impact theory to plane systems of rigid bodies;
• derive and linearize the equation of motion for oscillating mechanical systems with one degree of freedom and analyze their behavior in case of a free oscillation or as harmonically excited system.

## Subject of course

In the exercise course (UE), exercises matching the content of the corresponding lecture are solved. Constitutive components of each solution process are the identification of suitable physical approaches, their mathematical implementation and application, the physical interpretation of the mathematical solutions, and the critical examination of the results.

The students should be able to understand the necessity of a fundamental theoretical knowledge in the field of dynamics. Based on the basic laws, they should be able to develop solution strategies for more complex problems by using suitable combinations of these laws.

## Teaching methods

Exercise

Students work out solutions independently for a given task and get support from the lecturer. In addition to that, tutors accompany the exercises in order to support the students in finding correct solutions and to answer any questions that may arise. At the end of the lecture, for each of the examples, a possible solution is presented, whereby correlations to the theoretical principles are established and alternative solution strategies are also given.

Homeworks have to be done during the semester to monitor the learning progress. The feedback on the solutions found comes from fellow students in the form of peer reviews. Studying on the homeworks independently enables students to check their current learning progress. The subsequent peer review also provides an insight into different approaches and improves the understanding of the subject area.

## Mode of examination

Immanent

A preliminary discussion via ZOOM will be held together with the lecture Mechanik 2 VO.

Registration in TISS is required to participate in the exercise lecture . This will automatically direct you in the TUWEL course of this course.

Please consult the FAQs of this course for general questions. Please post your questions in the TUWEL discussion forum for this course if your question is not answered by the FAQs.

## Course dates

DayTimeDateLocationDescription
Tue14:00 - 15:0004.10.2022 Freihaus Hörsaal 1, oder per Live-StreamVorbesprechung für das Modul Mechanik 2 (gemeinsam mit der zugehörigen Vorlesung) - Link: https://tuwel.tuwien.ac.at/mod/livestream/view.php?id=1668379

## Examination modalities

The assessment consists of two stages:

# 1. Peer review

Four peer review sessions are held throughout the semester to monitor your learning progress. For a positive assessment of the exercise it is necessary to have completed three of the four peer-review sessions.

A peer review is considered completed when both the own solution and the assigned feedback have been fully submitted. Incomplete submissions or feedbacks or identical submissions by several participants will not be accepted. In these cases, the assessments done during the peer reviews will not be taken into account in the grading.

Submissions in the context of the peer review system are assessment relevant, this means that you will be issued a certificate. If you unsubscribe from the course before the first peer review, you will not be issued a certificate – not even a negative one.

# 2. Test

The positive assessment of the peer review is a prerequisite for taking the final test. This test covers the entire material of the exercise and serves to determine the final grade. A replacement test is offered for students who have failed in the test.

For a positive evaluation, the following points must be documented on the solution sheet for the individual tasks:

1. All the physical-mathematical approaches required to solve the task, including the sketches to understand the respective approach.
2. The main steps of the solution.
3. The final result, expressed in the dimensions given by the question (unless stated otherwise).

The following points should also be noted:

• A final result is evaluated only if the physical approach  is completely correct.
• An essential feature is the implementation of the task in a mathematical formulation. In this context, it is pointed out again that the consideration of positive counting directions and the correct signing of the equations are essential.
• Proper mathematical treatment of the equations is required. This means that there are no points for the mathematically correct treatment itself. This only needs to be traceable in the essential steps, but not documented in detail on the solution sheet. On the other hand, the problem cannot be solved without the correct application of mathematics.
• The determined solution (end result) must be dimensionally correct and plausible.
• Tasks that require the successful completion of previous subtasks will only be evaluated if the previous tasks have also been solved correctly. (Basic skills that are queried in preparatory sub-tasks must be mastered).
• The points may be divided according to the degree of difficulty and weighting of the individual questions.

The duration of the test is 60 minutes, tools such as calculators, formulas, scripts etc. are not allowed. Totally eight points can be obtained, whereby four points are required for a positive evaluation of the exercise.

## Exams

DayTimeDateRoomMode of examinationApplication timeApplication modeExam
Fri12:00 - 14:0027.01.2023FH Hörsaal 1 - MWB assessedno application-Übungstest (Paralleltermin)
Fri12:00 - 14:0027.01.2023GM 5 Praktikum HS- TCH assessedno application-Übungstest (Paralleltermin)
Fri12:00 - 14:0027.01.2023GM 2 Radinger Hörsaal - TCH assessedno application-Übungstest (Paralleltermin)
Fri12:00 - 14:0027.01.2023Informatikhörsaal - ARCH-INF assessedno application-Übungstest (Paralleltermin)
Fri12:00 - 14:0027.01.2023EI 7 Hörsaal - ETIT assessedno application-Übungstest (Paralleltermin)
Fri12:00 - 14:0027.01.2023GM 1 Audi. Max.- ARCH-INF assessedno application-Übungstest (Paralleltermin)
Fri10:00 - 12:0017.02.2023GM 5 Praktikum HS- TCH assessedno application-Ersatztest
Fri10:00 - 12:0017.02.2023FH Hörsaal 1 - MWB assessedno application-Ersatztest
Fri10:00 - 12:0017.02.2023Informatikhörsaal - ARCH-INF assessedno application-Ersatztest
Fri10:00 - 12:0017.02.2023GM 1 Audi. Max.- ARCH-INF assessedno application-Ersatztest

## Group dates

GroupDayTimeDateLocationDescription
Gruppe 01 - MO 09:00-11:00Mon09:00 - 11:0017.10.2022 - 23.01.2023Seminarraum BA 05 - MB 309.022 Mechanics of solid bodies, exercises 2 Gruppe 01 - MO 09:00-11:00
Gruppe 02 - MO 09:00-11:00Mon09:00 - 11:0017.10.2022 - 23.01.2023Seminarraum BA 02A 309.022 Mechanics of solid bodies, exercises 2 Gruppe 02 - MO 09:00-11:00
Gruppe 03 - DI 09:00-11:00Tue09:00 - 11:0018.10.2022 - 24.01.2023Seminarraum BA 05 - MB 309.022 Mechanics of solid bodies, exercises 2 Gruppe 03 - DI 09:00-11:00
Gruppe 04 - DI 09:00-11:00Tue09:00 - 11:0018.10.2022 - 24.01.2023Seminarraum BA 02A 309.022 Mechanics of solid bodies, exercises 2 Gruppe 04 - DI 09:00-11:00
Gruppe 05 - DI 16:00-18:00Tue16:00 - 18:0018.10.2022 - 24.01.2023Seminarraum BA 02B 309.022 Mechanics of solid bodies, exercises 2 Gruppe 05 - DI 16:00-18:00
Gruppe 06 - MI 09:00-11:00Wed09:00 - 11:0019.10.2022 - 25.01.2023Seminarraum BA 05 - MB 309.022 Mechanics of solid bodies, exercises 2 Gruppe 06 - MI 09:00-11:00
Gruppe 07 - MI 16:00-18:00Wed16:00 - 18:0019.10.2022 - 25.01.2023Seminarraum BA 05 - MB 309.022 Mechanics of solid bodies, exercises 2 Gruppe 07 - MI 16:00-18:00
Gruppe 08 - DO 09:00-11:00Thu09:00 - 11:0020.10.2022 - 26.01.2023Seminarraum BA 05 - MB 309.022 Mechanics of solid bodies, exercises 2 Gruppe 08 - DO 09:00-11:00
Gruppe 09 - DO 09:00-11:00Thu09:00 - 11:0020.10.2022 - 26.01.2023Seminarraum BA 02A 309.022 Mechanics of solid bodies, exercises 2 Gruppe 09 - DO 09:00-11:00
Gruppe 10 - DO 16:00-18:00Thu16:00 - 18:0020.10.2022 - 26.01.2023Seminarraum BA 02B 309.022 Mechanics of solid bodies, exercises 2 Gruppe 10 - DO 16:00-18:00
Gruppe 11 - DO 16:00-18:00Thu16:00 - 18:0020.10.2022 - 26.01.2023GM 8/9 - Hörsaal des Internationalen Wiener Motorensymposiums 309.022 Mechanics of solid bodies, exercises 2 Gruppe 11 - DO 16:00-18:00
Gruppe 12 - Sammelgruppe MO 16:00-18:00Mon16:00 - 18:0017.10.2022 - 23.01.2023GM 2 Radinger Hörsaal - TCH 309.022 Mechanics of solid bodies, exercises 2 Gruppe 12 - Sammelgruppe MO 16:00-18:00
Gruppe 13 - Online-GruppeMon16:00 - 18:0017.10.2022 - 23.01.2023 Online - Abwicklung über den TUWEL-Kurs. Anmeldung nur mit Begründung unter mechanik2ue@tuwien.ac.at309.022 Mechanics of solid bodies, exercises 2 Gruppe 13 - Online-Gruppe
Reserve-Gruppe 1 Mi 9 - keine Anmeldung möglich!Wed09:00 - 11:0019.10.2022 - 25.01.2023Seminarraum BA 02A 309.022 Mechanics of solid bodies, exercises 2 Reserve-Gruppe 1 Mi 9 - keine Anmeldung möglich!
Reserve-Gruppe 2 Mo 16 - keine Anmeldung möglich!Mon16:00 - 18:0017.10.2022 - 23.01.2023Seminarraum BA 08A - MB 309.022 Mechanics of solid bodies, exercises 2 Reserve-Gruppe 2 Mo 16 - keine Anmeldung möglich!
Reserve-Gruppe 3 Mi 16 - keine Anmeldung möglich!Wed16:00 - 18:0019.10.2022 - 25.01.2023Seminarraum BA 02B 309.022 Mechanics of solid bodies, exercises 2 Reserve-Gruppe 3 Mi 16 - keine Anmeldung möglich!
Reserve-Gruppe 4 MO 16 - keine Anmeldung möglich!Mon16:00 - 18:0017.10.2022 - 23.01.2023Seminarraum BA 02B 309.022 Mechanics of solid bodies, exercises 2 Reserve-Gruppe 4 MO 16 - keine Anmeldung möglich!

## Course registration

Begin End Deregistration end
01.09.2022 00:00 09.11.2022 08:00 19.10.2022 08:00

### Precondition

The student has to be enrolled for at least one of the studies listed below

## Group Registration

GroupRegistration FromTo
Gruppe 01 - MO 09:00-11:0005.10.2022 08:0012.10.2022 12:00
Gruppe 02 - MO 09:00-11:0005.10.2022 08:0012.10.2022 12:00
Gruppe 03 - DI 09:00-11:0005.10.2022 08:0012.10.2022 12:00
Gruppe 04 - DI 09:00-11:0005.10.2022 08:0012.10.2022 12:00
Gruppe 05 - DI 16:00-18:0005.10.2022 08:0012.10.2022 12:00
Gruppe 06 - MI 09:00-11:0005.10.2022 08:0012.10.2022 12:00
Gruppe 07 - MI 16:00-18:0005.10.2022 08:0012.10.2022 12:00
Gruppe 08 - DO 09:00-11:0005.10.2022 08:0012.10.2022 12:00
Gruppe 09 - DO 09:00-11:0005.10.2022 08:0012.10.2022 12:00
Gruppe 10 - DO 16:00-18:0005.10.2022 08:0012.10.2022 12:00
Gruppe 11 - DO 16:00-18:0005.10.2022 08:0012.10.2022 12:00
Gruppe 12 - Sammelgruppe MO 16:00-18:0005.10.2022 08:0012.10.2022 12:00
Gruppe 13 - Online-Gruppe05.10.2022 08:0012.10.2022 12:00
Reserve-Gruppe 1 Mi 9 - keine Anmeldung möglich!05.10.2022 08:0012.10.2022 12:00
Reserve-Gruppe 2 Mo 16 - keine Anmeldung möglich!05.10.2022 08:0012.10.2022 12:00
Reserve-Gruppe 3 Mi 16 - keine Anmeldung möglich!05.10.2022 08:0012.10.2022 12:00
Reserve-Gruppe 4 MO 16 - keine Anmeldung möglich!05.10.2022 08:0012.10.2022 12:00

## Curricula

Study CodeSemesterPrecon.Info
033 245 Mechanical Engineering 3. Semester
Course requires the completion of the introductory and orientation phase
033 282 Mechanical Engineering - Management 3. Semester
Course requires the completion of the introductory and orientation phase
700 Mechanical Engineering 2. Semester
740 Industrial Engineering-Management 2. Semester

## Literature

Lehrunterlagen:

Die Angaben der Übungsbeispiele stehen für Sie im TUWEL-Kurs als Download zur Verfügung und können auch in gedruckter Form während der Sekretariatssprechstunden am Institut erworben werden - Preis: 2€.

Die Lösungen zu den Beispielen werden sukzessive im TUWEL-Kurs freigeschalten.

Weiterführende Literatur:
Gamer, U.; Mack, W.:

Mechanik – Ein einführendes Lehrbuch für Studierende der technischen Wissenschaften.
Springer Verlag Wien, 1999. ISBN: 3-211-82854-0.
Parkus, H.:
Mechanik der festen Körper.
Springer, 2005. ISBN: 978-3-211-80777-4.
Magnus, K.; Müller-Slany H.H.:
Grundlagen der Technischen Mechanik
. Teubner Stuttgart, 2006. ISBN: 978-3-8351-0007-7.
Müller-Slany H.H.:
Aufgaben und Lösungsmethodik Technische Mechanik. Springer Wiesbaden, 2018. ISBN: 978-3-658-22419-6.
Lehmann, T.:
Elemente der Mechanik: 3. Kinetik.
Vieweg Braunschweig, 1977. ISBN: 3-528-19197-X.
Lugner, P.; Desoyer, K,: Novak, A.:
Technische Mechanik – Aufgaben und Lösungen
, Springer Verlag Wien, 1992. ISBN: 3-211-81717-4.
Gross, D.; Hauger, W.; Schröder, J. ; Wall, W. A.:
Technische Mechanik 3: Kinetik.
Springer Berlin Heidelberg, 2019. ISBN: 978-3-662-59550-3.
Gross, D.; Ehlers, W.; Schröder, J.; Müller, R.:
Formeln und Aufgaben zur Technischen Mechanik 3: Kinetik, Hydrodynamik. Springer Berlin Heidelberg, 2019. ISBN: 978-3-662-59681-4.

## Previous knowledge

Attending lecture 309.020 VO “Mechanics of solid bodies 2” preferably in the same semester.

German