# 184.765 Argumentation and Proof This course is in all assigned curricula part of the STEOP.\$(function(){PrimeFaces.cw("Tooltip","widget_j_id_21",{id:"j_id_21",showEffect:"fade",hideEffect:"fade",target:"isAllSteop"});});This course is in at least 1 assigned curriculum part of the STEOP.\$(function(){PrimeFaces.cw("Tooltip","widget_j_id_23",{id:"j_id_23",showEffect:"fade",hideEffect:"fade",target:"isAnySteop"});}); 2024S 2023S 2022S 2021S 2019S 2018W 2018S 2017S 2016S 2015W 2015S 2014S

2023S, VU, 4.0h, 6.0EC

## Properties

• Semester hours: 4.0
• Credits: 6.0
• Type: VU Lecture and Exercise
• Format: Hybrid

## Learning outcomes

After successful completion of the course, students are able to...

• explain the concept of proofs and their purpose.
• apply fundamental proof techniques.
• explain the relation to the proof calculus of natural deduction

## Subject of course

• What is a proof? What are the porpuses of proofs?
• Fundamental proof techniques
• Proofs for universal and existential statements, conjunctions, discjunctions, implications, equivalences
• Applying these proof techniques in a proof
• Connection to the calculus of natural inference
• What is a proof by induction? What is it needed for?
• Different types of induction (mathematical, strong, structural, Noetherian), each with a discussion of the corresponding induction scheme and application cases (demonstrated in detail with examples)
• How to write a proof by induction proof?

In the practice part, the more complex proofs are considered, including application cases from computer science (e.g. induction proofs for the termination of recursive programs).

## Teaching methods

Die LVA besteht aus einem Vorlesungsteil und einem Übungsteil. Im Vorlesungsteil werden Beweistechniken besprochen die dann im Übungsteil selbstständig auf Übungsaufgaben anzuwenden sind.

## Mode of examination

Immanent

ECTS breakdown:

VLecture part (ca 2.5 ECTS):

24h in class  and 36h preparation (before and after the lecture).

Exercise part  (ca 3.5 ECTS):

90h Development of proofs  including the  documentation, presentation in exercise groups and review of  proofs developed by other students.

## Course dates

DayTimeDateLocationDescription
Fri10:00 - 11:0003.03.2023 https://tuwien.zoom.us/j/65829028423?pwd=SW81YW9qOUxnTGR2d2lqQkFsanVOQT09kick-off meeting
Fri09:00 - 11:0010.03.2023 - 16.06.2023Seminarraum FAV EG C (Seminarraum Gödel) Uebungen, Q&A Einheiten
Thu13:30 - 14:3001.06.2023Seminarraum FAV EG C (Seminarraum Gödel) Sprechstunde (Übung)
Argumentation and Proof - Single appointments
DayDateTimeLocationDescription
Fri03.03.202310:00 - 11:00 https://tuwien.zoom.us/j/65829028423?pwd=SW81YW9qOUxnTGR2d2lqQkFsanVOQT09kick-off meeting
Fri10.03.202309:00 - 11:00Seminarraum FAV EG C (Seminarraum Gödel) Uebungen, Q&A Einheiten
Fri17.03.202309:00 - 11:00Seminarraum FAV EG C (Seminarraum Gödel) Uebungen, Q&A Einheiten
Fri24.03.202309:00 - 11:00Seminarraum FAV EG C (Seminarraum Gödel) Uebungen, Q&A Einheiten
Fri31.03.202309:00 - 11:00Seminarraum FAV EG C (Seminarraum Gödel) Uebungen, Q&A Einheiten
Fri21.04.202309:00 - 11:00Seminarraum FAV EG C (Seminarraum Gödel) Uebungen, Q&A Einheiten
Fri28.04.202309:00 - 11:00Seminarraum FAV EG C (Seminarraum Gödel) Uebungen, Q&A Einheiten
Fri05.05.202309:00 - 11:00Seminarraum FAV EG C (Seminarraum Gödel) Uebungen, Q&A Einheiten
Fri12.05.202309:00 - 11:00Seminarraum FAV EG C (Seminarraum Gödel) Uebungen, Q&A Einheiten
Fri26.05.202309:00 - 11:00Seminarraum FAV EG C (Seminarraum Gödel) Uebungen, Q&A Einheiten
Fri02.06.202309:00 - 11:00Seminarraum FAV EG C (Seminarraum Gödel) Uebungen, Q&A Einheiten
Fri09.06.202309:00 - 11:00Seminarraum FAV EG C (Seminarraum Gödel) Uebungen, Q&A Einheiten
Fri16.06.202309:00 - 11:00Seminarraum FAV EG C (Seminarraum Gödel) Uebungen, Q&A Einheiten

## Examination modalities

Elaboration of proofs including their documentation, presentation in exercise groups and peer review of proofs from other students.

## Course registration

Begin End Deregistration end
01.03.2023 10:00 17.03.2023 23:59 17.03.2023 23:59

## Curricula

Study CodeObligationSemesterPrecon.Info
033 534 Software & Information Engineering Mandatory elective
Course requires the completion of the introductory and orientation phase
033 535 Computer Engineering Mandatory elective
Course requires the completion of the introductory and orientation phase

## Literature

No lecture notes are available.

## Previous knowledge

Erste Erfahrungen mit Definitionen und im Formalisieren und  Beweisen.

Mathematikkenntnisse aus Algebra und Diskrete Mathematik,
Rekursion als Programmiertechnik (z.B. aus Algorithmen und Datenstrukturen 1).

German