# 104.295 Mathematics 3 for MB, WIMB and VT This course is in all assigned curricula part of the STEOP.\$(function(){PrimeFaces.cw("Tooltip","widget_j_id_21",{id:"j_id_21",showEffect:"fade",hideEffect:"fade",target:"isAllSteop"});});This course is in at least 1 assigned curriculum part of the STEOP.\$(function(){PrimeFaces.cw("Tooltip","widget_j_id_23",{id:"j_id_23",showEffect:"fade",hideEffect:"fade",target:"isAnySteop"});}); 2021W 2020W 2019W 2018W 2017W 2016W 2015W 2014W 2013W 2012W 2011W

2021W, VO, 2.0h, 3.0EC, to be held in blocked form

## Properties

• Semester hours: 2.0
• Credits: 3.0
• Type: VO Lecture
• LectureTube course
• Format: Hybrid

## Learning outcomes

After successful completion of the course, students are able to...

• ... in the theory of complex functions ...
• ... investigate the complex differentiability of a given function via the Cauchy--Riemann differential equations and calculate conjugate harmonic functions.
• ... calculate complex integrals over a parametrized curve or via the antiderivative.
• ... identify and classify the pols of a complex function and calculate the residuum at a pole.
• ... solve complex integrals via the Residue Theorem.
• ... in the vector space theory of a system of functions ...
• ... calculate the orthogonal projection of a given function onto the linear span of a given system of functions.
• ... calculate the coefficiets of the Fourier series of a given function.
• ... determine the limit of the Fourier series of a given function at a specified point using the Dirichlet Theorem.
• ... in the theory of integral-transformations...
• ... calculate the Laplace tranform of a given function, via the definition and the elementary properties (linearity, similarity, differential, integration, shift, ...) of the Laplace transform.
• ... dertermine the inverse of the Laplace transform of a function using the complex inversion-formula and the residue theorem.
• ... solve initial value problems using the Laplace transform.
• ... calculate the Fourier transform and inverse Fourier transform, via the definition and the elementary properties (linearity, similarity, differential, shift, ...) of the Fourier transform.
• ... in the theory of linear partial differential equations ...
• ... classify a given linear partial differential equation (order, coefficients, homogen or inhomogen, type,...).
• ... determine a general solution of a given linear partial differential equation of first order via the method of characteristics.
• ... determine a general solution of classical homgeneous linear partial differential equations  of second order (potential equation, heat equation, wave equation,...) by method of seperation of variables and fit the general solution to a given set of boundary conditions via application of the theory of Fourierseries.

## Subject of course

Laplace and Fourier transform, complex analysis, fourier series, partial differential equations

## Teaching methods

Lecture (an excercise course on the subjects of the lecture is offered as a sperate course)

Written

# Hybrid Teaching

As long as the situation allows, the lecture will take place in person/in the lecture hall. Lectures are both broadcase live and recorded and can be reviewed online by participants. Access is via TUWEL. Please also register here in TISS under Course registration.

Attention: Starting from November 22nd, only distance learning via Zoom meetings.

# Blocking

Attention, this lecture will be held in blocked form until Christmas (i.e. no lectures in January).
Regular lectures will be held every Monday and Tuesday from 16:10 to 16:55.
In addition, there will be lectures on 4.10, 18.10., 25.10., 29.11. and 6.12. (Mondays each) from 17:00 to 17:45 as well as on Wednesday, 10.11., from 15:10 to 16:10.

## Course dates

DayTimeDateLocationDescription
Mon16:00 - 17:0004.10.2021 - 24.01.2022GM 2 Radinger Hörsaal - TCH Lecture
Mon17:00 - 18:0004.10.2021GM 2 Radinger Hörsaal - TCH Vorlesung
Tue16:00 - 17:0005.10.2021 - 25.01.2022GM 2 Radinger Hörsaal - TCH Lecture
Mon17:00 - 18:0018.10.2021GM 2 Radinger Hörsaal - TCH Vorlesung
Mon17:00 - 18:0025.10.2021GM 2 Radinger Hörsaal - TCH Vorlesung
Wed15:00 - 17:0010.11.2021GM 2 Radinger Hörsaal - TCH Vorlesung
Mon16:10 - 16:5522.11.2021 - 24.01.2022 Zoom-Meeting (LIVE)Lecture
Tue16:10 - 16:5523.11.2021 - 25.01.2022 Zoom-Meeting (LIVE)Lecture
Mon17:00 - 17:4529.11.2021 Zoom-Meeting (LIVE)Lecture
Mon17:00 - 17:4506.12.2021 Zoom-Meeting (LIVE)Lecture
Mathematics 3 for MB, WIMB and VT - Single appointments
DayDateTimeLocationDescription
Mon04.10.202116:00 - 17:00GM 2 Radinger Hörsaal - TCH Lecture
Mon04.10.202117:00 - 18:00GM 2 Radinger Hörsaal - TCH Vorlesung
Tue05.10.202116:00 - 17:00GM 2 Radinger Hörsaal - TCH Lecture
Mon11.10.202116:00 - 17:00GM 2 Radinger Hörsaal - TCH Lecture
Tue12.10.202116:00 - 17:00GM 2 Radinger Hörsaal - TCH Lecture
Mon18.10.202116:00 - 17:00GM 2 Radinger Hörsaal - TCH Lecture
Mon18.10.202117:00 - 18:00GM 2 Radinger Hörsaal - TCH Vorlesung
Tue19.10.202116:00 - 17:00GM 2 Radinger Hörsaal - TCH Lecture
Mon25.10.202116:00 - 17:00GM 2 Radinger Hörsaal - TCH Lecture
Mon25.10.202117:00 - 18:00GM 2 Radinger Hörsaal - TCH Vorlesung
Mon08.11.202116:00 - 17:00GM 2 Radinger Hörsaal - TCH Lecture
Tue09.11.202116:00 - 17:00GM 2 Radinger Hörsaal - TCH Lecture
Wed10.11.202115:00 - 17:00GM 2 Radinger Hörsaal - TCH Vorlesung
Tue16.11.202116:00 - 17:00GM 2 Radinger Hörsaal - TCH Lecture
Mon22.11.202116:10 - 16:55 Zoom-MeetingLecture
Tue23.11.202116:10 - 16:55 Zoom-MeetingLecture
Mon29.11.202116:10 - 16:55 Zoom-MeetingLecture
Mon29.11.202117:00 - 17:45 Zoom-MeetingLecture
Tue30.11.202116:10 - 16:55 Zoom-MeetingLecture
Mon06.12.202116:10 - 16:55 Zoom-MeetingLecture
Course is held blocked

written exam

## Course registration

Begin End Deregistration end
22.09.2021 08:00 15.12.2021 03:00 15.12.2021 03:00

## Group Registration

GroupRegistration FromTo
Präsenzgruppe 11.10.08.10.2021 12:0011.10.2021 16:00
Präsenzgruppe 12.1011.10.2021 12:0012.10.2021 16:00
Präsenzgruppe 18.10.15.10.2021 12:0018.10.2021 16:00
Präsenzgruppe 19.10.15.10.2021 12:0019.10.2021 16:00

## Curricula

Study CodeObligationSemesterPrecon.Info
033 245 Mechanical Engineering Mandatory3. Semester
Course requires the completion of the introductory and orientation phase
033 273 Chemical and Process Engineering Mandatory3. Semester
033 282 Mechanical Engineering - Management Mandatory3. Semester

## Literature

The lecture notes are available at Grafisches Zentrum. Lecture notes from the winter semester 2020 can still be used.

## Previous knowledge

Calculus, ODEs, vector spaces

German