Climate change resilient energy infrastructure through AI-based adaptation

01.04.2024 - 31.10.2026
Forschungsförderungsprojekt

INFRADAPT develops machine learning-based methods for optimal or maximum utilization of existing capacities in low-voltage distribution networks. The impact of climate change on the energy infrastructure and a fair distribution of capacities are considered. The methods are developed and trained for universal use in real time and thus can be used regardless of the network topology. This includes developing and validating (technically and economically) methods for i) optimal placement and sizing of metering infrastructure in low-voltage distribution networks and ii) topology-independent capacity management that allocates available network resources based on metering, AI-based estimation, and AI-based load flow methods.

Personen

Projektleiter_in

Subprojektleiter_in

Subprojektmanager_innen

Institut

Grant funds

  • FFG - Österr. Forschungsförderungs- gesellschaft mbH (National) Programme Energieforschung (e!MISSION) Austrian Research Promotion Agency (FFG)

Forschungsschwerpunkte

  • Energy Active Buildings, Settlements and Spatial Infrastructures: 50%
  • Information Systems Engineering: 25%
  • Modeling and Simulation: 25%

Schlagwörter

DeutschEnglisch
Energy&ITEnergy&IT
Klimawandelclimate change
Simulation Simulation
Kapazitätsmanagementcapacity management
Energieinfrastrukturenergy infrastructure
Machine learningMachine learning

Externe Partner_innen

  • AIT Austrian Institute of Technolog
  • MOOSMOAR Energies OG
  • Siemens AG

Publikationen