ENVIROCATHYDRO: Anwendung von in situ Methoden auf die Umweltkatalyse

01.01.2010 - 31.12.2011
Research funding project
In the 21st century, heterogeneous catalysis research should focus on achieving 100% selectivity for the desired product in all catalyst-based processes. However, this can only be achieved by understanding the fundamental steps of the reaction mechanisms, which allow better design of a catalyst with optimized performance with respect to selectivity and activity. With the development of surface science in the early 70s fundamental studies led to discovery, development and enhanced understanding of several catalyst systems. Many of the early surface science techniques along with the newly developtechniques continue to and will play a very important role in the future development of next generation catalysts and catalytic processes for the industrial use and environmental protection. This project will incorporate new techniques in the catalysis field to obtain valuable surface science information for the improvement of catalysis applied for environmental problems. This will be performed by the investigations of two different hydrogenation environmental reactions, (hydrodechlorination of trichloroethylene in gas phase using Pt,Pd-ternary hydrotalcites and the reduction of nitrates in water streams for drinking water using Pt/CeO2 catalysts), using in situ SFG (Laser spectroscopy by sum frequency generation) and Transmission and ATR (attenuated total reflection) Fourier transform infrared techniques. A better understanding of the reaction mechanism will allow the design of catalysts with optimized performance. The main novelty of the project consists in the application of SFG techniques, used till now for single crystals or model systems, to real catalytic processes. In liquid phase systems, SFG will allow us to specify the species at the surface without contributions from the liquid phase. By using these techniques for monitoring of catalytic reactions, a new field opens up, which can be extended to other types of reactions.

People

Project leader

Project personnel

Institute

Förderungmittel

  • European Commission (EU) RP7 III. MENSCHEN (Marie Curie Maßnahmen) 7.Rahmenprogramm für Forschung Europäische Kommission - Rahmenprogamme Europäische Kommission Ausschreibungskennung FP7-PEOPLE-IEF-2008 Antragsnummer 236741

Research focus

  • Structure-Property Relationsship: 25%
  • Sustainable Production and Technologies: 25%
  • Surfaces and Interfaces: 25%
  • Materials Characterization: 25%

Keywords

GermanEnglish
in situ Spektroskopiein situ spectroscopy
Laser Spektroskopielaser spectroscopy
Abwassserreinigungwaste water purification
Oberflächenchemiesurface chemistry
Umweltkatalyseenvironmental catalysis

Publications