Am 30. Juli 2024 wird es aufgrund einer wichtigen Datenbankaktualisierung zwischen 8 und 11 Uhr zu Serviceunterbrechungen in den Bereichen Student-Self-Service und Personalbedarf kommen. Vielen Dank für Ihr Verständnis.

066 645 Masterstudium Data Science

  • Zeige alle LVAs des Studienjahres an, in dem das ausgewählte Semester liegt.

2024W-2025S (2018U)

TitelAnm.Bed.StundenECTS
Masterstudium Data Science https://informatics.tuwien.ac.at/master/data-science/
120.0
Prüfungsfach Data Science - Foundations
36.0
Modul FDS/FD - Fundamentals of Data Science - Foundations
9.0
VU Data-oriented Programming Paradigms
2.03.0
VU Experiment Design for Data Science
2.03.0
VU Statistical Computing
2.03.0
105.731 VU 2025S
2.03.0
Modul MLS/FD - Machine Learning and Statistics - Foundations
9.0
VU Advanced Methods for Regression and Classification
3.04.5
3.04.5
VU Machine Learning
3.04.5
Modul BDHPC/FD - Big Data and High Performance Computing - Foundations
9.0
VU Advanced Database Systems
4.06.0
VU Data-intensive Computing
2.03.0
Modul VAST/FD - Visual Analytics and Semantic Technologies - Foundations
9.0
VO Cognitive Foundations of Visualization
3.0
VO Information Visualization
2.03.0
VU Semantic Systems
2.03.0
Prüfungsfach Domain-Specific Aspects of Data Science
9.0
Modul DSA - Domain-Specific Aspects of Data Science
9.0
VU Interdisciplinary Lecture Series on Data Science
1.01.0
PR Interdisciplinary Project in Data Science
4.05.0
VU Domain-Specific Lectures in Data Science
3.0
Prüfungsfach Fundamentals of Data Science - Core and Extension
Modul FDS/CO - Fundamentals of Data Science - Core
6.0
VU Data Acquisition and Survey Methods
2.03.0
2.03.0
VO Data Stewardship
2.03.0
Modul FDS/EX - Fundamentals of Data Science - Extension
es dürfen maximal 18 ECTS absolviert werden
VU Advanced Cryptography
4.06.0
VU Data Center Operations
2.03.0
UE Data Stewardship
2.03.0
VU Computational Social Science
2.03.0
VU Digital Humanism
2.03.0
VU Internet Security
2.03.0
VU Software Security
2.03.0
VU Sustainability in Computer Science
2.03.0
VU Systems and Applications Security
4.06.0
VU User Research Methods
2.03.0
PR User Research Methods
2.03.0
Prüfungsfach Machine Learning and Statistics - Core and Extension
Modul MLS/CO - Machine Learning and Statistics - Core
6.0
VU Recommender Systems
2.03.0
VU Statistical Simulation and Computer Intensive Methods
2.03.0
2.03.0
Modul MLS/EX - Machine Learning and Statistics - Extension
es dürfen maximal 18 ECTS absolviert werden
VU Advanced Learning Methods
2.03.0
VU Advanced Modeling and Simulation
2.03.0
VU Advanced Reinforcement Learning
3.0
VU AI/ML in the Era of Climate Change
3.04.0
VU AKNUM Reinforcement Learning
4.06.0
VU Algorithmic Social Choice
4.06.0
VU Applied Deep Learning
2.03.0
VO Bayesian Statistics
2.03.0
UE Bayesian Statistics
1.02.0
VU Bayesian Statistics
3.05.0
VU Business Intelligence
4.06.0
VU Crypto Asset Analytics
2.03.0
VU Deep Learning for Visual Computing
2.03.0
VU General Regression Models
3.05.0
VO General Regression Models
2.03.0
UE General Regression Models
1.02.0
VU Generative AI
2.03.0
VU Intelligent Audio and Music Analysis
3.04.5
VO Introduction to Statistical Inference
3.04.5
UE Introduction to Statistical Inference
1.02.0
VU Machine Learning for Visual Computing
3.04.5
VU Mathematical Programming
2.03.0
VU Modeling and Simulation
2.03.0
VU Modelling and Simulation in Health Technology Assessment
2.03.0
VO Multivariate Statistics
3.04.5
107.388 VO 2024W
3.04.5
UE Multivariate Statistics
1.01.5
107.391 UE 2024W
1.01.5
VU Probabilistic Programming and AI
4.06.0
4.06.0
VU Problem Solving and Search in Artificial Intelligence
2.03.0
VU Sicherheit, Privacy und Erklärbarkeit in Maschinellem Lernen
2.03.0
VU Self-Organizing Systems
3.04.5
VU Similarity Modeling 1
2.03.0
VU Similarity Modeling 2
2.03.0
VU Social Network Analysis
2.03.0
VU Theoretical Foundations and Research Topics in Machine Learning
2.03.0
Prüfungsfach Big Data and High-Performance Computing - Core and Extension
Modul BDHPC/CO - Big Data and High Performance Computing - Core
6.0
VU Basics of Parallel Computing
2.03.0
VU Effiziente Programme
2.03.0
Modul BDHPC/EX - Big Data and High Performance Computing - Extension
es dürfen maximal 18 ECTS absolviert werden
VU Algorithmic Geometry
3.04.5
VU Algorithmics
4.06.0
VO Analysis 2
3.03.0
UE Analysis 2
2.04.5
VU Approximation Algorithms
2.03.0
VU Complexity Analysis
2.03.0
VU Database Theory
2.03.0
VU Fixed-Parameter Algorithms and Complexity
3.04.5
VU Frontiers of Algorithms and Complexity
2.03.0
VU GPU Architectures and Computing
4.06.0
VU Graph Drawing Algorithms
3.04.5
VU Hands-On Cloud Native
4.06.0
VU Heuristic Optimization Techniques
3.04.5
VU High Performance Computing
3.04.5
VO Nonlinear Optimization
2.03.0
105.147 VO 2024W
2.03.0
UE Nonlinear Optimization
1.02.0
105.652 UE 2024W
1.02.0
VU Optimization in Transport and Logistics
2.03.0
VU Structural Decompositions and Algorithms
2.03.0
VU Advanced Multiprocessor Programming
3.04.5
VU Randomized Algorithms
2.03.0
Prüfungsfach Visual Analytics and Semantic Technologies - Core and Extension
Modul VAST/CO - Visual Analytics and Semantic Technologies - Core
6.0
VU Advanced Information Retrieval
2.03.0
UE Design and Evaluation of Visualisations
3.0
Modul VAST/EX - Visual Analytics and Semantic Technologies - Extension
es dürfen maximal 18 ECTS absolviert werden
VO Deductive Databases
2.03.0
VU Description Logics and Ontologies
2.03.0
VU Document Analysis
2.03.0
UE Information Visualization
1.01.5
VU KBS for Business Informatics
4.06.0
VU Knowledge-based Systems
4.06.0
VU Knowledge Graphs
2.03.0
VO Medical Image Processing
2.03.0
UE Medical Image Processing
2.03.0
VU Natural Language Processing and Information Extraction
2.03.0
VO Processing of Declarative Knowledge
2.03.0
VU Research Topics in Natural Language Processing
2.03.0
VU Real-time Visualization
2.03.0
VU Semantic Technologies
2.03.0
VU Semi-Automatic Information and Knowledge Systems
2.03.0
2.03.0
VU Visual Data Science
2.03.0
VU Visualization 2
3.04.5
Prüfungsfach Freie Wahlfächer und Transferable Skills
9.0
English TSK
VU Technical English Presentation A
3.0
VU Technical English Communication A
3.0
VU Technical English Presentation B
3.0
VU Technical English Communication B
3.0
VO European Union - Institutions, Policies and Future Challenges
2.0
1.52.0
VU Global Strategy, Markets and Politics
2.03.0
SE Science and the quest for knowledge
1.01.0
VO Creativity Engineering
3.0
VU Searching prior art based on patent applications
2.03.0
VU Collaboration and Co-Creation
2.03.0
VU E&I Garage - Business Model Development
3.05.0
Modul Freie Wahlfächer und Transferable Skills
SE Coaching als Führungsinstrument 1
2.03.0
2.03.0
SE Coaching als Führungsinstrument 2
2.03.0
SE Didaktik in der Informatik
2.03.0
VO EDV-Vertragsrecht
1.01.5
280.239 VO 2024W
1.01.5
VO Einführung in die Wissenschaftstheorie I
2.03.0
VO Einführung in Technik und Gesellschaft
2.03.0
SE Folgenabschätzung von Informationstechnologien
2.03.0
VU Forschungsmethoden
2.03.0
VO Frauen in Naturwissenschaft und Technik
2.03.0
SE Gruppendynamik
3.03.0
PR IT-Projekte für Jugendliche
3.0
UE IT Projekte für Jugendliche
1.5
VU Kommunikation und Moderation
2.03.0
SE Kommunikation und Rhetorik
2.03.0
181.200 SE 2025S
2.03.0
181.200 SE 2024W
2.03.0
SE Kommunikation und Rhetorik 2
2.03.0
181.204 SE 2024W
2.03.0
SE Kommunikationstechnik
1.01.5
VU Kooperatives Arbeiten
2.03.0
VU Präsentation und Moderation
2.03.0
VO Präsentation, Moderation und Mediation
1.01.5
UE Präsentation, Moderation und Mediation
2.02.0
VU Präsentations- und Verhandlungstechnik
2.03.0
SE Privatissimum aus Fachdidaktik Informatik
4.04.0
VU Rhetorik, Körpersprache, Argumentationstraining
2.03.0
SE Scientific Presentation and Communication
2.03.0
VU Softskills für TechnikerInnen
2.03.0
2.03.0
2.03.0
VU Techniksoziologie und Technikpsychologie
2.03.0
VO Theorie und Praxis der Gruppenarbeit
2.03.0
SE VWA Mentoring I
2.02.0
SE VWA Mentoring II
2.02.0
VO Zwischen Karriere und Barriere
2.03.0
Diplomarbeit und kommissionelle Gesamtprüfung
30.0
SE Seminar für Diplomand_innen
1.01.5
Abschlussarbeit Diplomarbeit
27.0
Abschlussprüfung Kommissionelle Abschlussprüfung
1.5
Verantwortliche_r Studiendekan_in
Bei Fragen zum Curriculum wenden Sie sich bitte an eine_n der verantwortlichen Studiendekan_innen.

Legende

Lehrveranstaltungen gehören zur Studieneingangs- und Orientierungsphase STEOP
Lehrveranstaltungen gehören zum Studieneingangsgespräch STEG
Lehrveranstaltungen erfordern die Erfüllung der Studieneingangs- und Orientierungsphase STEOP
Lehrveranstaltungen erfordern die Erfüllung des Studieneingangsgesprächs STEG