066 645 Masterstudium Data Science

  • Zeige alle LVAs des Studienjahres an, in dem das ausgewählte Semester liegt.

2018W-2019S (2018U)

TitelAnm.Bed.StundenECTS
Masterstudium Data Science http://www.informatik.tuwien.ac.at/studium/angebot/master/DataScience
120.0
Prüfungsfach Data Science - Foundations
36.0
Modul FDS/FD - Fundamentals of Data Science - Foundations
9.0
VU Data-oriented Programming Paradigms
2.03.0
2.03.0
VU Experiment Design for Data Science
2.03.0
2.03.0
VO Statistical Computing
2.03.0
107.106 VO 2019S
2.03.0
Modul MLS/FD - Machine Learning and Statistics - Foundations
9.0
VU Advanced Methods for Regression and Classification
3.04.5
3.04.5
VU Machine Learning
3.04.5
184.702 VU 2019S
3.04.5
184.702 VU 2018W
3.04.5
Modul BDHPC/FD - Big Data and High Performance Computing - Foundations
9.0
VU Data-intensive Computing
2.03.0
194.048 VU 2019S
2.03.0
VU Datenbanksysteme Vertiefung
4.06.0
184.780 VU 2019S
4.06.0
Modul VAST/FD - Visual Analytics and Semantic Technologies - Foundations
9.0
VO Cognitive Foundations of Visualization
2.03.0
2.03.0
VU Einführung in Semantic Systems
2.03.0
2.03.0
VO Information Visualization
2.03.0
186.141 VO 2019S
2.03.0
188.305 VO 2018W
2.03.0
Prüfungsfach Domain-Specific Aspects of Data Science
9.0
Modul DSA - Domain-Specific Aspects of Data Science
9.0
VU Interdisciplinary Lecture Series on Data Science
1.01.0
1.01.0
PR Interdisciplinary Project in Data Science
4.05.0
4.05.0
Prüfungsfach Fundamentals of Data Science - Core and Extension
Modul FDS/CO - Fundamentals of Data Science - Core
6.0
VU Data Acquisition and Survey Methods
2.03.0
2.03.0
VO Data Stewardship
2.03.0
194.044 VO 2019S
2.03.0
Modul FDS/EX - Fundamentals of Data Science - Extension
VU Communicating Data
2.03.0
VU Data Center Operations
2.03.0
UE Data Stewardship
2.03.0
194.045 UE 2019S
2.03.0
VU Internet Security
2.03.0
188.366 VU 2019S
2.03.0
VU Organizational Aspects of IT-Security
2.03.0
2.03.0
VU Software Security
2.03.0
188.959 VU 2019S
2.03.0
VU User Research Methoden
2.03.0
187.A68 VU 2018W
2.03.0
PR User Research Methoden
2.03.0
187.A69 PR 2018W
2.03.0
Prüfungsfach Machine Learning and Statistics - Core and Extension
Modul MLS/CO - Machine Learning and Statistics - Core
6.0
VU Recommender Systems
2.03.0
194.035 VU 2019S
2.03.0
VU Statistical Simulation and Computer Intensive Methods
2.03.0
2.03.0
Modul MLS/EX - Machine Learning and Statistics - Extension
VU Advanced Learning Methods
2.03.0
VU Advanced Modeling and Simulation
2.03.0
VO Bayesian Statistics
2.03.0
107.395 VO 2019S
2.03.0
UE Bayesian Statistics
1.02.0
107.397 UE 2019S
1.02.0
VU Data Analysis
2.03.0
107.A03 VU 2019S
2.03.0
VO General Regression Models
2.03.0
2.03.0
UE General Regression Models
1.02.0
1.02.0
VO Introduction to Statistical Inference
3.04.5
UE Introduction to Statistical Inference
1.02.0
VU Mathematical Programming
2.03.0
186.835 VU 2019S
2.03.0
VU Modeling and Simulation
2.03.0
101.732 VU 2018W
2.03.0
VU Business Intelligence
4.06.0
188.429 VU 2018W
4.06.0
VO Multivariate Statistics
3.04.5
107.388 VO 2018W
3.04.5
UE Multivariate Statistics
1.01.5
107.391 UE 2018W
1.01.5
VU Problem Solving and Search in Artificial Intelligence
2.03.0
2.03.0
VU Self-Organizing Systems
3.04.5
188.413 VU 2018W
3.04.5
VU Similarity Modeling 2
2.03.0
188.498 VU 2018W
2.03.0
VU Social Network Analysis
2.03.0
194.050 VU 2018W
2.03.0
Prüfungsfach Big Data and High-Performance Computing - Core and Extension
Modul BDHPC/CO - Big Data and High Performance Computing - Core
6.0
VU Basics of Parallel Computing
2.03.0
191.114 VU 2019S
2.03.0
VU Energy-efficient Distributed Systems
2.03.0
2.03.0
Modul BDHPC/EX - Big Data and High Performance Computing - Extension
VU Algorithmics
4.06.0
186.814 VU 2018W
4.06.0
VO Analysis 2
3.03.0
104.267 VO 2019S
3.03.0
UE Analysis 2
2.04.5
104.268 UE 2019S
2.04.5
VU Approximation Algorithms
2.03.0
186.102 VU 2018W
2.03.0
VU Complexity Analysis
2.03.0
VU Database Theory
2.03.0
181.140 VU 2019S
2.03.0
VU Effiziente Programme
2.03.0
185.190 VU 2018W
2.03.0
VU GPU Architectures and Computing
4.06.0
4.06.0
VU High Performance Computing
3.04.5
3.04.5
VU Heuristic Optimization Techniques
2.03.0
2.03.0
VO Nichtlineare Optimierung
2.03.0
105.147 VO 2018W
2.03.0
UE Nichtlineare Optimierung
1.02.0
105.652 UE 2018W
1.02.0
VU Structural Decompositions and Algorithms
2.03.0
2.03.0
VU Weiterführende Multiprocessor Programmierung
3.04.0
Prüfungsfach Visual Analytics and Semantic Technologies - Core and Extension
Modul VAST/CO - Visual Analytics and Semantic Technologies - Core
6.0
UE Design and Evaluation of Visualisations
2.03.0
2.03.0
VU Advanced Information Retrieval
2.03.0
2.03.0
Modul VAST/EX - Visual Analytics and Semantic Technologies - Extension
VO Deductive Databases
2.03.0
VU Description Logics and Ontologies
2.03.0
184.772 VU 2018W
2.03.0
VU Informationsdesign und Visualisierung
2.03.0
2.03.0
VU Information Extraction
2.03.0
UE Information Visualization
1.01.5
186.143 UE 2019S
1.01.5
188.308 UE 2018W
1.01.5
VU KBS for Business Informatics
4.06.0
VU Knowledge-based Systems
4.06.0
184.730 VU 2019S
4.06.0
VO Processing of Declarative Knowledge
2.03.0
2.03.0
VU Real-time Visualization
2.03.0
186.191 VU 2018W
2.03.0
VU Semantic Web Technologies
2.03.0
184.729 VU 2018W
2.03.0
VU Semi-Automatic Information and Knowledge Systems
2.03.0
2.03.0
VU Visual Data Science
2.03.0
186.868 VU 2018W
2.03.0
VU Visualization 2
3.04.5
186.833 VU 2019S
3.04.5
Prüfuchsfach Freie Wahlfächer und Transferable Skills
9.0
Diplomarbeit und kommissionelle Gesamtprüfung
30.0
Abschlussarbeit Diplomarbeit
27.0
Abschlussprüfung Kommissionelle Gesamtprüfung
3.0
SE Seminar für Diplomand_innen
1.01.5
1.01.5
1.01.5
Verantwortliche_r Studiendekan_in
Bei Fragen zum Curriculum wenden Sie sich bitte an eine_n der verantwortlichen Studiendekan_innen.

Legende

Lehrveranstaltungen gehören zur Studieneingangs- und Orientierungsphase STEOP
Lehrveranstaltungen gehören zum Studieneingangsgespräch STEG
Lehrveranstaltungen erfordern die Erfüllung der Studieneingangs- und Orientierungsphase STEOP
Lehrveranstaltungen erfordern die Erfüllung des Studieneingangsgesprächs STEG