387.087 Photonics 2
This course is in all assigned curricula part of the STEOP.
This course is in at least 1 assigned curriculum part of the STEOP.

2022W, VU, 2.0h, 3.0EC

Properties

  • Semester hours: 2.0
  • Credits: 3.0
  • Type: VU Lecture and Exercise
  • Format: Presence

Learning outcomes

After successful completion of the course, students are able to explain and independently analyze advanced photonic concepts describing various linear and nonlinear interactions between light and matter.

Subject of course

Interaction of radiation and atomic systems:

  • Atomic susceptibility and optical Bloch equations
  • Gain saturation in systems with homogeneous and inhomogeneous broadening.
  • Spectral and spatial hole burning.

Coherent interactions:

  • Vector representation
  • Dicke’s superradiance
  • Photon Echoes
  • Self-induced transparency

Nonlinear Optics:

  • Nonlinear susceptibilities
  • Three and four wave mixing, phase matching (general principles)
  • TDSE
  • SHG, THG
  • Parametric amplification, oscillation, fluorescence
  • Optical Kerr effect
  • Spontaneous and stimulated Raman and Brillouin scattering. Optical phase conjugation.
  • Linear and quadratic electrooptic effects
  • Acoustooptics (as a form of three-wave mixing)

Technology overview of most significant laser types

  • General classification: semiconductor, fiber, gas, solid-state, etc. active media and pumping architectures
  • Typical solid-state lasers (Nd-, Yb-, Ti-, Cr- doped)
  • Typical fiber lasers (Er-, Yb- doped)
  • Typical high-power gal lasers (CO2, excimer)

Noteworthy laser applications:

  • Dynamics of laser—matter interactions, ablation regimes
  • Materials processing (cutting, welding, waveguide inscription, additive manufacturing, microfluidics)
  • Nonlinear-optical applications in medicine and biology (surgery, dentistry, two-photon microscopy, SRS tissue imaging)
  • Metrological applications
  • Astronomy (guided star)
  • Prospect for laser-driven energy generation from thermonuclear fusion.

Teaching methods

Presentation by lecturers

Mode of examination

Oral

Additional information

Permanent Zoom link:

https://tuwien.zoom.us/j/98250748680?pwd=NXJZbDZZcE40VTMzeTRSZUxJZ1ZJZz09

Meeting ID: 982 5074 8680
Password: %B84U!^u

 

Lecturers

Institute

Course dates

DayTimeDateLocationDescription
Wed11:00 - 13:0005.10.2022 - 25.01.2023EI 3A Hörsaal Vorlesung
Photonics 2 - Single appointments
DayDateTimeLocationDescription
Wed05.10.202211:00 - 13:00EI 3A Hörsaal Vorlesung
Wed12.10.202211:00 - 13:00EI 3A Hörsaal Vorlesung
Wed19.10.202211:00 - 13:00EI 3A Hörsaal Vorlesung
Wed09.11.202211:00 - 13:00EI 3A Hörsaal Vorlesung
Wed16.11.202211:00 - 13:00EI 3A Hörsaal Vorlesung
Wed23.11.202211:00 - 13:00EI 3A Hörsaal Vorlesung
Wed30.11.202211:00 - 13:00EI 3A Hörsaal Vorlesung
Wed07.12.202211:00 - 13:00EI 3A Hörsaal Vorlesung
Wed14.12.202211:00 - 13:00EI 3A Hörsaal Vorlesung
Wed21.12.202211:00 - 13:00EI 3A Hörsaal Vorlesung
Wed11.01.202311:00 - 13:00EI 3A Hörsaal Vorlesung
Wed18.01.202311:00 - 13:00EI 3A Hörsaal Vorlesung
Wed25.01.202311:00 - 13:00EI 3A Hörsaal Vorlesung

Examination modalities

Exam

Course registration

Begin End Deregistration end
19.09.2022 23:59 16.12.2022 09:40

Curricula

Study CodeObligationSemesterPrecon.Info
066 507 Telecommunications Mandatory
066 508 Microelectronics and Photonics Mandatory

Literature

Georg Reider, Photonik / Photonics

Ralf Menzel, Photonics Linear and Nonlinear Interactions of Laser Light and Matter, (Springer 2007)

Eugene Hecht, Optics, (Addison Wesley, 2002)

Orazio Svelto, Principles of Lasers, (Plenum Press, 1998)

Ammon Yariv, Quantum Electronics, 3rd edition  (John Wiley, 1989)

Robert Boyd, Nonlinear Optics, 4rd edition (Academic Press, 2020)

Marc Eichhorn, Laser Physics: From Principles to Practical Work in the Lab, (Springer 2014)

Previous knowledge

Photonics 1 or similar introduction into optics and optoelectronics

Language

if required in English