387.087 Photonics 2
This course is in all assigned curricula part of the STEOP.
This course is in at least 1 assigned curriculum part of the STEOP.

2020W, VU, 2.0h, 3.0EC

Properties

  • Semester hours: 2.0
  • Credits: 3.0
  • Type: VU Lecture and Exercise
  • Format: Online

Learning outcomes

After successful completion of the course, students are able to explain and independently analyze advanced photonic concepts describing various linear and nonlinear interactions between light and matter.

Subject of course

Interaction of radiation and atomic systems:

  • Atomic susceptibility and optical Bloch equations
  • Gain saturation in systems with homogeneous and inhomogeneous broadening.
  • Spectral and spatial hole burning.

Coherent interactions:

  • Vector representation
  • Dicke’s superradiance
  • Photon Echoes
  • Self-induced transparency

Nonlinear Optics:

  • Nonlinear susceptibilities
  • Three and four wave mixing, phase matching (general principles)
  • TDSE
  • SHG, THG
  • Parametric amplification, oscillation, fluorescence
  • Optical Kerr effect
  • Spontaneous and stimulated Raman and Brillouin scattering. Optical phase conjugation.
  • Linear and quadratic electrooptic effects
  • Acoustooptics (as a form of three-wave mixing)

Technology overview of most significant laser types

  • General classification: semiconductor, fiber, gas, solid-state, etc. active media and pumping architectures
  • Typical solid-state lasers (Nd-, Yb-, Ti-, Cr- doped)
  • Typical fiber lasers (Er-, Yb- doped)
  • Typical high-power gal lasers (CO2, excimer)

Noteworthy laser applications:

  • Dynamics of laser—matter interactions, ablation regimes
  • Materials processing (cutting, welding, waveguide inscription, additive manufacturing, microfluidics)
  • Nonlinear-optical applications in medicine and biology (surgery, dentistry, two-photon microscopy, SRS tissue imaging)
  • Metrological applications
  • Astronomy (guided star)
  • Prospect for laser-driven energy generation from thermonuclear fusion.

Teaching methods

Presentation by lecturer

Mode of examination

Oral

Additional information

Anwesenheitspflicht. In 2020 the lecture will be held via distance learning.   Links to the on-line teaching will be send to all registered students 

Lecturers

Institute

Course dates

DayTimeDateLocationDescription
Wed11:00 - 13:0007.10.2020 - 27.01.2021Seminarraum 387 Vorlesung
Photonics 2 - Single appointments
DayDateTimeLocationDescription
Wed07.10.202011:00 - 13:00Seminarraum 387 Vorlesung
Wed14.10.202011:00 - 13:00Seminarraum 387 Vorlesung
Wed21.10.202011:00 - 13:00Seminarraum 387 Vorlesung
Wed28.10.202011:00 - 13:00Seminarraum 387 Vorlesung
Wed04.11.202011:00 - 13:00Seminarraum 387 Vorlesung
Wed11.11.202011:00 - 13:00Seminarraum 387 Vorlesung
Wed18.11.202011:00 - 13:00Seminarraum 387 Vorlesung
Wed25.11.202011:00 - 13:00Seminarraum 387 Vorlesung
Wed02.12.202011:00 - 13:00Seminarraum 387 Vorlesung
Wed09.12.202011:00 - 13:00Seminarraum 387 Vorlesung
Wed16.12.202011:00 - 13:00Seminarraum 387 Vorlesung
Wed13.01.202111:00 - 13:00Seminarraum 387 Vorlesung
Wed20.01.202111:00 - 13:00Seminarraum 387 Vorlesung
Wed27.01.202111:00 - 13:00Seminarraum 387 Vorlesung

Examination modalities

Exam

Course registration

Begin End Deregistration end
23.09.2020 23:59 31.10.2020 23:59

Curricula

Study CodeObligationSemesterPrecon.Info
066 507 Telecommunications Mandatory
066 508 Microelectronics and Photonics Mandatory

Literature

No lecture notes are available.

Previous knowledge

Photonics 1 or similar introduction into optics and optoelectronics

Language

if required in English