376.000 Automation
This course is in all assigned curricula part of the STEOP.
This course is in at least 1 assigned curriculum part of the STEOP.

2020W, VU, 3.0h, 4.5EC
TUWEL

Properties

  • Semester hours: 3.0
  • Credits: 4.5
  • Type: VU Lecture and Exercise
  • Format: Hybrid

Learning outcomes

After successful completion of the course, students are able to

  • identify and analyze potential applications and task of automatic control.
  • examine the properties of linear systems and use linear systems to approximate nonlinear systems locally.
  • choose appropriate controller design methods for linear systems (loop shaping, state space methods) and apply them to examples.
  • evaluate the performance of designed control systems.

Subject of course

Introduction to continuous-time and discrete-time systems, the concept of state, linearity, time-invariance, state transition matrix, Jordan canonical form, equilibrium points, linearization (around an equilibrium and a trajectory), asymptotic stability of an equilibrium, input-output representation (transfer function, transfer matrix), realization problem for SISO-systems, frequency response (bode plot, nyquist plot), BIBO-stability (Routh-Hurwitz-, Michailov-, Nyquist-criterion), the concept of closed loop versus open loop, performance considerations, internal stability, asymptotic tracking, disturbance rejection, one- and two-parameter feedback systems, cascade control loops, design of control systems in the frequency domain: loopshaping technique (P-, I-, PD-, PI-, PID-, Lead-, Lag-compensator, Notch-filter), reachability and observability (reachability and observability matrix, PBH test, reachability and observability Gramian, Markov parameter and Hankel matrix), design of control systems in the state-space: pole-assignment (formula of Ackermann), observer design (trivial observer, full state Luenberger observer), duality principle, separation principle, implementation of digital controllers

Teaching methods

online lecture via ZOOM in the TUWEL course, presentation of examples during the lecture, online homework assignments with exercise classes

Mode of examination

Written

Additional information

  • Preliminary discussion during the first lecture
  • Exercise course starts in November 2019
  • Used software: Matlab/Simulink + Control System Toolbox, computer algebra program MAPLE
  • Guidelines for the exercise course:
    Exercises are available on the homepage. Both attendance and preparation of the exercises is not compulsory. During the online exercise classes, we will discuss possible solution strategies and the relevant theoretical basics.  Bonus points for the written exam can be gathered by solving additional examples for selected exercise classes.
  • Online exams: In case regulations of the federal government or the TU Wien prohibit exams on site, the exams will be held in an written online form. Guidelines on written online exams can be found on the homepage. Random checks can be performed within 2 weeks after the written exam to verify its originality and plausibility.

Lecturers

Institute

Course dates

DayTimeDateLocationDescription
Thu08:00 - 10:0001.10.2020 - 19.11.2020 Online (LIVE)E376: VU Automatisierung, VO
Tue08:00 - 10:0006.10.2020 - 26.01.2021 Online (LIVE)E376: VU Automatisierung, VO
Mon17:00 - 19:0023.11.2020 - 25.01.2021 Online (LIVE)E376: VU Automatisierung, UE
Mon14:00 - 16:0030.11.2020 - 25.01.2021 Online (LIVE)E376: VU Automatisierung, UE
Automation - Single appointments
DayDateTimeLocationDescription
Thu01.10.202008:00 - 10:00 OnlineE376: VU Automatisierung, VO
Tue06.10.202008:00 - 10:00 OnlineE376: VU Automatisierung, VO
Thu08.10.202008:00 - 10:00 OnlineE376: VU Automatisierung, VO
Tue13.10.202008:00 - 10:00 OnlineE376: VU Automatisierung, VO
Thu15.10.202008:00 - 10:00 OnlineE376: VU Automatisierung, VO
Tue20.10.202008:00 - 10:00 OnlineE376: VU Automatisierung, VO
Thu22.10.202008:00 - 10:00 OnlineE376: VU Automatisierung, VO
Tue27.10.202008:00 - 10:00 OnlineE376: VU Automatisierung, VO
Thu29.10.202008:00 - 10:00 OnlineE376: VU Automatisierung, VO
Tue03.11.202008:00 - 10:00 OnlineE376: VU Automatisierung, VO
Thu05.11.202008:00 - 10:00 OnlineE376: VU Automatisierung, VO
Tue10.11.202008:00 - 10:00 OnlineE376: VU Automatisierung, VO
Thu12.11.202008:00 - 10:00 OnlineE376: VU Automatisierung, VO
Tue17.11.202008:00 - 10:00 OnlineE376: VU Automatisierung, VO
Thu19.11.202008:00 - 10:00 OnlineE376: VU Automatisierung, VO
Mon23.11.202017:00 - 19:00 OnlineE376: VU Automatisierung, UE
Tue24.11.202008:00 - 10:00 OnlineE376: VU Automatisierung, VO
Mon30.11.202014:00 - 16:00 OnlineE376: VU Automatisierung, UE
Mon30.11.202017:00 - 19:00 OnlineE376: VU Automatisierung, UE
Tue01.12.202008:00 - 10:00 OnlineE376: VU Automatisierung, VO

Examination modalities

The examination for Automatisierung is held in written from only due to the current COVID-19 situation. Bonus points for the written exams can be gathered by solving additional examples as part of the exercise classes. Further details will be given in the first lecture.

Group dates

GroupDayTimeDateLocationDescription
Mo 14:00-16:30 OnlineMon14:00 - 16:3023.11.2020 - 25.01.2021 Zoom376.000 Automation Mo 14:00-16:30 Online

Course registration

Begin End Deregistration end
30.09.2020 00:00 05.02.2021 23:59 04.11.2020 23:59

Group Registration

GroupRegistration FromTo
Mo 14:00-16:30 Online01.10.2020 00:0018.11.2020 23:00

Curricula

Study CodeObligationSemesterPrecon.Info
033 235 Electrical Engineering and Information Technology Mandatory5. Semester
033 535 Computer Engineering Mandatory5. SemesterSTEOP
Course requires the completion of the introductory and orientation phase
045 006 Digital Skills Mandatory electiveSTEOP
Course requires the completion of the introductory and orientation phase

Literature

Lecture notes for this course are available under https://www.acin.tuwien.ac.at/bachelor/automatisierung/.

[1] Ackermann J., Abtastregelung, 3. Auflage, Springer, Berlin Heidelberg, (1988). [2] Aström K.J., Wittenmark B., Computer-Controlled Systems, 3rd Ed., Prentice Hall, New Jersey, (1997). [3] Chen C.-T., Control System Design, Pond Woods Press, New York, (1987). [4] Franklin G.F., Powell, J.D., Workman, M., Digital Control of Dynamic Systems, Addison Wesley, California, (1998). [5] Gausch F., Hofer A., Schlacher K., Digitale Regelkreise, Oldenbourg, München, (1991). [6] Horn M., Dourdoumas N., Regelungstechnik, Pearson Studium, München, (2004). [7] Isermann R., Digitale Regelkreise, Band I, 2. Auflage, Springer, Berlin Heidelberg, (1988). [8] Kailath T., Linear Systems, Prentice Hall, New Jersey, (1980). [9] Ludyk G., Theoretische Regelungstechnik 1 und 2, Springer, Berlin Heidelberg, (1995). [10] Luenberger D.G., Introduction to Dynamic Systems, John Wiley & Sons, New York, (1979). [11] Lunze J., Regelungstechnik 1 (5. Auflage) und 2 (3. Auflage), Springer, Berlin Heidelberg New York, (2006) und (2005). [12] Reinschke K., Lineare Regelungs- und Steuerungstheorie, Springer, Berlin Heidelberg, (2006). [13] Rohrs Ch., Melsa J.L., Schultz D.G., Linear Control Systems, McGraw-Hill, New York, (1993). [14] Rugh W.J., Linear System Theory, Prentice Hall, New Jersey, (1993). [15] Weinmann A., Regelungen: Analyse und technischer Entwurf, Band 1 und 2, 3. Auflage, Springer, Wien New York, (1998)

Previous knowledge

The following lectures are STRONGLY recommended as previous knowledge: Mathematik 1 f. ET, Mathematik 2 f. ET, Mathematik 3 f.ET, Signale und Systeme 1, Signale und Systeme 2

Preceding courses

Accompanying courses

Continuative courses

Miscellaneous

Language

German