366.102 Nanoelectromechanical Systems
Diese Lehrveranstaltung ist in allen zugeordneten Curricula Teil der STEOP.
Diese Lehrveranstaltung ist in mindestens einem zugeordneten Curriculum Teil der STEOP.

2024S, VU, 2.0h, 3.0EC


  • Semesterwochenstunden: 2.0
  • ECTS: 3.0
  • Typ: VU Vorlesung mit Übung
  • Format der Abhaltung: Präsenz


Nach positiver Absolvierung der Lehrveranstaltung sind Studierende in der Lage zu:

  • Compare different fundamental continuum mechanical resonator types,
  • Conduct an eigenfrequency analysis of standard continuum nanomechanical resonators,
  • Understand and apply the dynamic mechanics of damped linear resonators,
  • Analyse the dynamic mechanical behavior of a continuum mechanical resonator in terms of a lumped-element model,
  • Explain the fundamental behavior of damped non-linear and coupled linear resonators,
  • Know different definitions of the quality factor,
  • Compare different loss mechanisms (medium, clamping, and intrinsic),
  • Explain damping dilution,
  • Predict the quality factor of a specific nanomechanical resonator,
  • Understand and discuss responsivity and sensitivity of a nanomechanical resonator,
  • Derive point mass responsivity, and compare strings to beams,
  • Derive distributed mass responsivity,
  • Compare static vs resonant force responsivity,
  • Discuss force gradient and softening effects,
  • Discuss temperature responsivity,
  • Discuss and compare various transduction schemes, such as electrodynamic, electrostatic, thermoelastic, piezoresistive, piezoelectric, and optic,
  • Discuss thermomechanical amplitude noise,
  • Explain electronic noise sources (shot noise, Johnson noise),
  • Derive frequency noise based on thermomechanical amplitude noise,
  • Discuss oscillator circuits such as PLL and closed-loop,
  • Discuss Allan deviation.

Inhalt der Lehrveranstaltung

Nanoelectromechanical systems (NEMS) have been developed for a bit more than two decades now. NEMS are the continuation of Microelectromechanical Systems (MEMS), which have become omnipresent helpers in smart phones, cars, watches, etc. The two driving forces for NEMS research have been improved sensor technology and fundamental research.

This course introduces the latest models and skills required to design and optimise nano electromechanical resonators, taking a top-down approach that uses macroscopic formulas to model the devices. The course covers the electrical and mechanical aspects of NEMS devices. The introduced mechanical models are also key to the understanding and optimisation of nanomechanical resonators used e.g. in optomechanics.

The course is based on the yet unpublished 2nd edition of the following book:

S. Schmid, L. Villanueva, M. Roukes: 
"Fundamentals of Nanomechanical Resonators"; 
Springer International Publishing, Switzerland, 2023, 2nd Edition;

A PDF of the book is available on TUWEL.

The course  content is:

  • 366.102-01: Damped linear resonators (book chapter 1)
  • 366.102-02: Coupled linear resonators, damped nonlinear resonators, parametric amplification (book chapter 1)
  • 366.102-03: Rayleigh-Ritz method, Euler-Bernoulli beam theory (book chapter 2)
  • 366.102-04: Effective parameters, geometric nonlinearities (book chapter 2)
  • 366.102-05: Medium interaction losses, clamping losses, friction (book chapter 3)
  • 366.102-06: Fundamental losses, dissipation dilution (book chapter 3)
  • 366.102-07: Electrodynamic & electrostatic transduction (book chapter 4)
  • 366.102-08: Piezoresistive, piezoelectric, thermoplastic, & optomechanic transduction (book chapter 4)
  • 366.102-09: Amplitude noise (book chapter 5)
  • 366.102-10: Frequency noise (book chapter 5)
  • 366.102-11: Response to change of mass (book chapter 6)
  • 366.102-12: Response to change of effective spring constant (book chapter 6)


Lecture including an exercise guided by a tutor.
Time: Wednesdays 13:00 - 17:00 (In the first lecture we will discuss and find a time that suits all students.)
The learned theory will be demonstrated on a real world experiment based on a macroscopic string resonator!



Weitere Informationen

Der Kurs startet am 2024-03-13.

Vortragende Personen


LVA Termine

Di.14:00 - 16:0012.03.2024 - 25.06.2024Seminarraum 366 Vorlesung und Übung
Nanoelectromechanical Systems - Einzeltermine
Di.12.03.202414:00 - 16:00Seminarraum 366 Vorlesung und Übung
Di.19.03.202414:00 - 16:00Seminarraum 366 Vorlesung und Übung
Di.09.04.202414:00 - 16:00Seminarraum 366 Vorlesung und Übung
Di.16.04.202414:00 - 16:00Seminarraum 366 Vorlesung und Übung
Di.23.04.202414:00 - 16:00Seminarraum 366 Vorlesung und Übung
Di.30.04.202414:00 - 16:00Seminarraum 366 Vorlesung und Übung
Di.07.05.202414:00 - 16:00Seminarraum 366 Vorlesung und Übung
Di.14.05.202414:00 - 16:00Seminarraum 366 Vorlesung und Übung
Di.28.05.202414:00 - 16:00Seminarraum 366 Vorlesung und Übung
Di.04.06.202414:00 - 16:00Seminarraum 366 Vorlesung und Übung
Di.11.06.202414:00 - 16:00Seminarraum 366 Vorlesung und Übung
Di.18.06.202414:00 - 16:00Seminarraum 366 Vorlesung und Übung
Di.25.06.202414:00 - 16:00Seminarraum 366 Vorlesung und Übung


Hand in of at least 8 home assignments.


Von Bis Abmeldung bis
30.01.2024 08:00 07.03.2024 23:59 07.03.2024 23:59


066 504 Masterstudium Embedded Systems Gebundenes Wahlfach
066 508 Mikroelektronik und Photonik Gebundenes Wahlfach
066 646 Computational Science and Engineering Keine Angabe


S. Schmid, L. Villanueva, M. Roukes: 
"Fundamentals of Nanomechanical Resonators"; 
Springer International Publishing, Switzerland, 2016, ISBN: 978-3-319-28689-1;


Bachelor in any technical education.