366.102 Nanoelectromechanical Systems
Diese Lehrveranstaltung ist in allen zugeordneten Curricula Teil der STEOP.
Diese Lehrveranstaltung ist in mindestens einem zugeordneten Curriculum Teil der STEOP.

2021S, VU, 2.0h, 3.0EC
TUWEL

Merkmale

  • Semesterwochenstunden: 2.0
  • ECTS: 3.0
  • Typ: VU Vorlesung mit Übung
  • Format der Abhaltung: Präsenz

Lernergebnisse

Nach positiver Absolvierung der Lehrveranstaltung sind Studierende in der Lage zu:

  • Compare different fundamental continuum mechanical resonator types,
  • Conduct an eigenfrequency analysis of standard continuum nanomechanical resonators,
  • Understand and apply the dynamic mechanics of damped linear resonators,
  • Analyse the dynamic mechanical behavior of a continuum mechanical resonator in terms of a lumped-element model,
  • Explain the fundamental behavior of damped non-linear and coupled linear resonators,
  • Know different definitions of the quality factor,
  • Compare different loss mechanisms (medium, clamping, and intrinsic),
  • Explain damping dilution,
  • Predict the quality factor of a specific nanomechanical resonator,
  • Understand and discuss responsivity and sensitivity of a nanomechanical resonator,
  • Derive point mass responsivity, and compare strings to beams,
  • Derive distributed mass responsivity,
  • Compare static vs resonant force responsivity,
  • Discuss force gradient and softening effects,
  • Discuss temperature responsivity,
  • Discuss and compare various transduction schemes, such as electrodynamic, electrostatic, thermoelastic, piezoresistive, piezoelectric, and optic,
  • Discuss thermomechanical amplitude noise,
  • Explain electronic noise sources (shot noise, Johnson noise),
  • Derive frequency noise based on thermomechanical amplitude noise,
  • Discuss oscillator circuits such as PLL and closed-loop,
  • Discuss Allan deviation.

Inhalt der Lehrveranstaltung

Nanoelectromechanical systems (NEMS) have been developed for a bit more than two decades now. NEMS are the continuation of Microelectromechanical Systems (MEMS), which have become omnipresent helpers in smart phones, cars, watches, etc. The two driving forces for NEMS research have been improved sensor technology and fundamental research.

This course introduces the latest models and skills required to design and optimise nano electromechanical resonators, taking a top-down approach that uses macroscopic formulas to model the devices. The course covers the electrical and mechanical aspects of NEMS devices. The introduced mechanical models are also key to the understanding and optimisation of nanomechanical resonators used e.g. in optomechanics.

The course is based on the book:

S. Schmid, L. Villanueva, M. Roukes: 
"Fundamentals of Nanomechanical Resonators"; 
Springer International Publishing, Switzerland, 2016, ISBN: 978-3-319-28689-1;

The course  content is:

  • 366.102-1: Euler-Bernoulli beam theory (book chapter 1)
  • 366.102-2: Rayleigh's method applied to strings & effective parameters (book chapter 1)
  • 366.102-3: Lumped-element model resonator (book chapter 1)
  • 366.102-4: Nonlinear & coupled resonators (book chapter 1)
  • 366.102-5: Energy loss to the environment (book chapter 2)
  • 366.102-6: Damping dilution (book chapter 2)
  • 366.102-7: Intrinsic damping (book chapter 2)
  • 366.102-8: Mass responsivity (book chapter 3)
  • 366.102-9: Force responsivity & responsivity of effective spring constant (book chapter 3)
  • 366.102-10: Electrodynamic & electrostatic transduction (book chapter 4)
  • 366.102-11: Piezoresistive, piezoelectric, thermoplastic, & optomechanic transduction (book chapter 4)
  • 366.102-12: Amplitude noise (book chapter 5)
  • 366.102-13: Frequency noise & oscillator circuits (book chapter 5)

Methoden

1h lecture followed by 1h exercise in class guided by a tutor. NEW THIS YEAR: The learned theory will be demonstrated on a real world experiment based on a macroscopic string resonator!

Prüfungsmodus

Mündlich

Weitere Informationen

Sollte aufgrund von Vorgaben der Bundesregierung bzw. der TU Wien die Abhaltung der Lehrveranstaltung und der Prüfung bzw. der Teilleistungen in Präsenz nicht möglich sein, wird in das online-Format gewechselt. Durch den Wechsel in das online-Format können sich die für die Präsenzlehrveranstaltung und -prüfung (-teilleistungen) angekündigten Termine ändern. Bei einem Wechsel ins online-Format gelten folgende Methoden und Modi:

Methode bei Wechsel ins online-Format:
Die Vorlesung wird via Zoom abgehalten. Die Übungen können elektronisch eingereicht werden. 

Prüfungsmodus bei Wechsel ins online-Format:
Die Prüfung ist mündlich und findet via Zoom statt.

Beurteilungsschema bei der online-Prüfung:
Zwei Kapitel (eins vorbereited und eins zufällig gezogen) des begleitenden Buches werden mündlich geprüft. Die Beurteilung setzt sich aus der Leistung in den beiden Themenbereichen zusammen.

Erforderliches technisches Equipment für die Teilnahme an Lehrveranstaltung und Prüfung:
Gerät zur Teilnahme an Onlinemeetings inkl. Audio- und Videoübertragung.

..............................

Achtung: Vorlesungstermine werden noch vereinbart!


Vortragende Personen

Institut

Leistungsnachweis

Hand in of at least 8 home assignments.

LVA-Anmeldung

Von Bis Abmeldung bis
12.01.2021 22:00 05.03.2021 23:59 05.03.2021 23:59

Curricula

StudienkennzahlVerbindlichkeitSemesterAnm.Bed.Info
066 504 Masterstudium Embedded Systems Gebundenes Wahlfach
066 508 Mikroelektronik und Photonik Gebundenes Wahlfach
066 646 Computational Science and Engineering Keine Angabe

Literatur

S. Schmid, L. Villanueva, M. Roukes: 
"Fundamentals of Nanomechanical Resonators"; 
Springer International Publishing, Switzerland, 2016, ISBN: 978-3-319-28689-1;

Vorkenntnisse

Bachelor in any technical education.

Sprache

Englisch