# 325.097 Implementation of a Finite Element Program This course is in all assigned curricula part of the STEOP.\$(function(){PrimeFaces.cw("Tooltip","widget_j_id_20",{id:"j_id_20",showEffect:"fade",hideEffect:"fade",target:"isAllSteop"});});This course is in at least 1 assigned curriculum part of the STEOP.\$(function(){PrimeFaces.cw("Tooltip","widget_j_id_22",{id:"j_id_22",showEffect:"fade",hideEffect:"fade",target:"isAnySteop"});});

2019W, VU, 3.0h, 4.0EC

## Properties

• Semester hours: 3.0
• Credits: 4.0
• Type: VU Lecture and Exercise

## Learning outcomes

After successful completion of the course, students are able to

• name all important modules of a typical finite element programs and explain their functionality
• develop a feasible concept for the implementation for a particular module
• implement this module in a given framework
• critically evaluate and test the implementation
• explain the reason for the chosen solution strategy
• document their work in a technical report

Additionally, student should improve their ability to

• work in teams in an efficient and organised manner
• critically review the work of others
• give constructive feedback

## Subject of course

Based on the courses “Fundamentals of the Finite Element method” and “Finite Element Methods for multi-physics 1” the computer implementation of a finite element solver is explained based on an example in Python. Students then work in teams to develop a concept for the implementation of a new module (e.g. new element types, new partial differential equation, etc.) into the given software framework. The implementation is then carried out and tested based on a validation concept (e.g. a set of suitable test-cases) developed by the students. Finally, the work will be presented and documented.

## Teaching methods

This is a team-learning course: After a recapitulation of the necessary fundamentals and the introduction of used tools (lectures) the students collaborate within small teams to complete a project in the subject area of the course. The project progress is presented and discussed with all course participants in 3 workshops during the semester. Weekly question and answers sessions are offered to provide additional regular feedback.

Immanent

## Course dates

DayTimeDateLocationDescription
Mon12:00 - 14:0007.10.2019 - 27.01.2020Kleiner Schiffbau Vorlesung/Fragestunde/Workshop
Implementation of a Finite Element Program - Single appointments
DayDateTimeLocationDescription
Mon07.10.201912:00 - 14:00Kleiner Schiffbau Vorlesung/Fragestunde/Workshop
Mon14.10.201912:00 - 14:00Kleiner Schiffbau Vorlesung/Fragestunde/Workshop
Mon21.10.201912:00 - 14:00Kleiner Schiffbau Vorlesung/Fragestunde/Workshop
Mon28.10.201912:00 - 14:00Kleiner Schiffbau Vorlesung/Fragestunde/Workshop
Mon04.11.201912:00 - 14:00Kleiner Schiffbau Vorlesung/Fragestunde/Workshop
Mon11.11.201912:00 - 14:00Kleiner Schiffbau Vorlesung/Fragestunde/Workshop
Mon18.11.201912:00 - 14:00Kleiner Schiffbau Vorlesung/Fragestunde/Workshop
Mon25.11.201912:00 - 14:00Kleiner Schiffbau Vorlesung/Fragestunde/Workshop
Mon02.12.201912:00 - 14:00Kleiner Schiffbau Vorlesung/Fragestunde/Workshop
Mon09.12.201912:00 - 14:00Kleiner Schiffbau Vorlesung/Fragestunde/Workshop
Mon16.12.201912:00 - 14:00Kleiner Schiffbau Vorlesung/Fragestunde/Workshop
Mon13.01.202012:00 - 14:00Kleiner Schiffbau Vorlesung/Fragestunde/Workshop
Mon20.01.202012:00 - 14:00Kleiner Schiffbau Vorlesung/Fragestunde/Workshop
Mon27.01.202012:00 - 14:00Kleiner Schiffbau Vorlesung/Fragestunde/Workshop

## Examination modalities

The course is graded based on a small introduction test, the presentations and discussions during the workshops and the final project report.

## Course registration

Begin End Deregistration end
26.09.2019 00:00 14.10.2019 23:55 06.11.2019 23:00

## Group Registration

GroupRegistration FromTo
Gruppe 107.10.2019 00:0006.11.2019 23:00

## Curricula

Study CodeSemesterPrecon.Info
066 445 Mechanical Engineering
Course requires the completion of the introductory and orientation phase
066 482 Mechanical Engineering - Management
Course requires the completion of the introductory and orientation phase
066 646 Computational Science and Engineering
066 646 Computational Science and Engineering

## Literature

No lecture notes are available.

## Previous knowledge

The course is aimed at students with good basic knowledge of the FE method who wish to specialise in this field (e.g. diploma thesis).

English