# 319.032 Singlephase and Multiphase Flows This course is in all assigned curricula part of the STEOP.\$(function(){PrimeFaces.cw("Tooltip","widget_j_id_21",{id:"j_id_21",showEffect:"fade",hideEffect:"fade",target:"isAllSteop"});});This course is in at least 1 assigned curriculum part of the STEOP.\$(function(){PrimeFaces.cw("Tooltip","widget_j_id_23",{id:"j_id_23",showEffect:"fade",hideEffect:"fade",target:"isAnySteop"});}); 2022W 2021W 2020W 2019W 2018W 2017W 2016W 2015W 2014W 2013W 2012W 2011W 2010W 2009W 2008W 2007W

2022W, VU, 3.0h, 4.0EC

## Properties

• Semester hours: 3.0
• Credits: 4.0
• Type: VU Lecture and Exercise
• Format: Presence

## Learning outcomes

After successful completion of the course, students are able to
1.) formulate stress-srtain relations relations of viscous and viscoelastic fluids and to apply them to simple shear flows.
2.) Set up mass and momentum or balance of forces for control volumes in a shear flow and thus derive and solve the equations of motion for simple shear flows.
3.) describe or explain föpw-effects that only occur with viscoelastic fluids.
4.) describe and explain normal-stress-effects of non-Newtonian fluids.
5.) establish the equations of motion for simple shear flows (Couette flow, pipe and film flows) for Newtonian and non-Newtonian fluids and to solve them for fully developed flows.
6.) Set up and interpret the basic equations and boundary conditions for incompressible flows.
7.) apply the concept of mechanical similarity to flows and indicate the corresponding dimensionless measures.
8.)  calculate the flow around spheres and bubbles in case of small and large Reynolds numbers.
9.) specify the bubble and drop shape or resistance for different areas of the Reynolds and Weber numbers.
10.) to characterize potential flows and to calculate them in simple cases.
11.) to calculate the steady rise or fall rate of bubbles or drops in another fluid.
12.) to explain cavitation and the collapse of cavitation bubbles.
13.) describe the decay of liquid jets.
14.) to calculate the speed of sound in a compressible fluid (ideal gas or gas/liquid mixture).
15.) to calculate the mass flow of a compressible fluid through a (Laval) nozzle.
16.) to qualitatively describe the compressible flow through and behind a nozzle.
17.) to characterize flow forms of multiphase flows. 18.) Give the equations of state of homogeneous gas/liquid mixtures.
19.) calculate the speed of sound of a homogeneous gas-liquid mixture.
20.) To calculate one-dimensional, homogeneous two-phase flows with and without friction.
21.) describe two-phase flows with relative velocity.
22.) derive and apply the drift flow model.
23.) describe and calculate sedimentation problems by solving a kinematic wave equation.
24.) to solve the problems in the exercise collection.
25.) to answer the questions in the questionnaire correctly.

## Subject of course

Simple shear flows (Couette flow, pipe flow) of Newtonian and non-Newtonian fluids; liquid films; motion of solid particles, liquid drops and gas bubbles; cavitation bubbles; disintegration of liquid jets;  homogeneous two-phase flows (speed of sound, pipe flow, nozzle flow) and two-phase flows with relative motion (solid bed, fluidised bed, sedimentation).

## Teaching methods

Excercises and applications will be presented. A collection of examples and a catalog of theoretical question should help preparing for the written tests.

Immanent

## Course dates

DayTimeDateLocationDescription
Wed10:00 - 12:0005.10.2022 - 25.01.2023GM 3 Vortmann Hörsaal - VT Lecture, Exercises
Thu12:00 - 13:0006.10.2022 - 26.01.2023GM 4 Knoller Hörsaal - VT Lecture, Exercises
Singlephase and Multiphase Flows - Single appointments
DayDateTimeLocationDescription
Wed05.10.202210:00 - 12:00GM 3 Vortmann Hörsaal - VT Lecture, Exercises
Thu06.10.202212:00 - 13:00GM 4 Knoller Hörsaal - VT Lecture, Exercises
Wed12.10.202210:00 - 12:00GM 3 Vortmann Hörsaal - VT Lecture, Exercises
Thu13.10.202212:00 - 13:00GM 4 Knoller Hörsaal - VT Lecture, Exercises
Wed19.10.202210:00 - 12:00GM 3 Vortmann Hörsaal - VT Lecture, Exercises
Thu20.10.202212:00 - 13:00GM 4 Knoller Hörsaal - VT Lecture, Exercises
Thu27.10.202212:00 - 13:00GM 4 Knoller Hörsaal - VT Lecture, Exercises
Thu03.11.202212:00 - 13:00GM 4 Knoller Hörsaal - VT Lecture, Exercises
Wed09.11.202210:00 - 12:00GM 3 Vortmann Hörsaal - VT Lecture, Exercises
Thu10.11.202212:00 - 13:00GM 4 Knoller Hörsaal - VT Lecture, Exercises
Wed16.11.202210:00 - 12:00GM 3 Vortmann Hörsaal - VT Lecture, Exercises
Thu17.11.202212:00 - 13:00GM 4 Knoller Hörsaal - VT Lecture, Exercises
Wed23.11.202210:00 - 12:00GM 3 Vortmann Hörsaal - VT Lecture, Exercises
Thu24.11.202212:00 - 13:00GM 4 Knoller Hörsaal - VT Lecture, Exercises
Wed30.11.202210:00 - 12:00GM 3 Vortmann Hörsaal - VT Lecture, Exercises
Thu01.12.202212:00 - 13:00GM 4 Knoller Hörsaal - VT Lecture, Exercises
Wed07.12.202210:00 - 12:00GM 3 Vortmann Hörsaal - VT Lecture, Exercises
Wed14.12.202210:00 - 12:00GM 3 Vortmann Hörsaal - VT Lecture, Exercises
Thu15.12.202212:00 - 13:00GM 4 Knoller Hörsaal - VT Lecture, Exercises
Wed11.01.202310:00 - 12:00GM 3 Vortmann Hörsaal - VT Lecture, Exercises

## Examination modalities

Three written exams + three homeworks, see Course Dates.

## Exams

DayTimeDateRoomMode of examinationApplication timeApplication modeExam
Fri09:00 - 13:0003.03.2023GM 3 Vortmann Hörsaal - VT assessed27.01.2023 23:45 - 01.03.2023 10:10TISSErsatztests

## Course registration

Begin End Deregistration end
05.09.2022 13:00 01.11.2022 08:34 01.11.2022 14:15

### Registration modalities

Bitte melden Sie sich zur Lehrveranstaltung in tiss an, damit Sie Zugriff auf TUWEL und die Unterlagen haben.

## Curricula

Study CodeSemesterPrecon.Info
033 273 Chemical and Process Engineering 5. Semester
Course requires the completion of the introductory and orientation phase

## Literature

L. Prandtl et al.: Führer durch die Strömungslehre. 9. Aufl., Vieweg, 1990.
C. Brennen: Fundamentals of Multiphase Flow. Cambridge, 2005.
H. Brauer: Ein- u. Mehrphasenströmungen. Sauerländer, 1971.
H.A. Barnes et al.: An Introduction to Rheology. Elsevier, 1989.
H. Kuhlmann: Strömungsmachanik. Pearson, 2007.
W. Schneider et al.: Repetitorium Thermodynamik. 3. Aufl., Oldenbourg, 2012.

German