317.535 Nonlinear Finite Element Methods
This course is in all assigned curricula part of the STEOP.
This course is in at least 1 assigned curriculum part of the STEOP.

2019W, VO, 2.0h, 3.0EC

Properties

  • Semester hours: 2.0
  • Credits: 3.0
  • Type: VO Lecture

Learning outcomes

After successful completion of the course, students are able to

  • name and describe sources of nonlinear system behavior in the field of solid mechanics

  • derive the finite-element-description for nonlinear problems from the principle of virtual work

  • list and describe solution procedures for nonlinear finite element problems

  • list and describe methods to determine the critical load and buckling modes for nonlinear stability problems

  • name and explain different sources of nonlinear material behavior as well as to explain how the corresponding material routine is embedded within a finite element program

Subject of course

  • General description of nonlinear problems in solid mechanics

  • Fundamentals of nonlinear continuum mechanics

  • Derivation of the finite-element-description for nonlinear problems

  • Incremental-iterative solution procedures

  • Geometric nonlinearities (finite deformations)

  • Nonlinear material behavior

  • Nonlinear stability analysis

  • Application to examples

Teaching methods

  • Theory in form of a presentation

  • Discussion of problems occurring in practical applications

  • Python programs to illustrate different schemes

Mode of examination

Oral

Lecturers

Institute

Course dates

DayTimeDateLocationDescription
Mon14:00 - 17:3014.10.2019 - 28.10.2019Seminarraum BE 01 VO Nonlinear Finite Element Methods
Mon14:00 - 16:1504.11.2019 - 16.12.2019Seminarraum BE 01 VO Nonlinear Finite Element Methods
Nonlinear Finite Element Methods - Single appointments
DayDateTimeLocationDescription
Mon14.10.201914:00 - 17:30Seminarraum BE 01 Introduction, Mathematical Foundation, Continuum Mechanics
Mon21.10.201914:00 - 17:30Seminarraum BE 01 Continuum Mechanics, Linear Finite Element Method
Mon28.10.201914:00 - 17:30Seminarraum BE 01 Formulation of Nonlinear FE Method
Mon04.11.201914:00 - 16:15Seminarraum BE 01 Solution Procedures
Mon18.11.201914:00 - 16:15Seminarraum BE 01 Solution Procedures, Nonlinear Elasto-Stability
Mon25.11.201914:00 - 16:15Seminarraum BE 01 Nonlinear Elasto-Stability
Mon02.12.201914:00 - 16:15Seminarraum BE 01 Material Routines, Hyperelasticity
Mon09.12.201914:00 - 16:15Seminarraum BE 01 Plasticity
Mon16.12.201914:00 - 16:15Seminarraum BE 01 Plasticity

Examination modalities

Oral exam with a duration of about 30min including about 10min for written preparation

Exams

DayTimeDateRoomMode of examinationApplication timeApplication modeExam
Thu10:30 - 14:0016.01.2020Seminarraum BE 01 oral01.10.2019 08:00 - 14.01.2020 23:00TISSExam 2019W - 1
Fri09:00 - 12:0017.01.2020Seminarraum BE 01 oral01.10.2019 08:00 - 14.01.2020 23:00TISSExam 2019W - 1
Fri13:00 - 15:0017.01.2020Seminarraum BE 01 oral01.10.2019 08:00 - 14.01.2020 23:00TISSExam 2019W - 1
Fri09:00 - 12:0007.02.2020Seminarraum BE 01 oral01.10.2019 08:00 - 05.02.2020 23:00TISSExam 2019W - 2
Fri09:00 - 12:0027.03.2020Seminarraum BE 01 oral02.03.2020 08:00 - 25.03.2020 23:00TISSExam 2019W - 3
Fri09:00 - 12:0015.05.2020Seminarraum BE 01 oral02.03.2020 08:00 - 13.05.2020 23:00TISSExam 2019W - 4
Fri09:00 - 12:0026.06.2020Seminarraum BE 01 oral02.03.2020 08:00 - 24.06.2020 23:00TISSExam 2019W - 5
Fri09:00 - 12:0010.07.2020Seminarraum BE 01 oral02.03.2020 08:00 - 08.07.2020 23:00TISSExam 2019W - 6

Course registration

Begin End Deregistration end
13.10.2019 10:00 05.03.2020 23:00 05.03.2020 23:00

Curricula

Study CodeSemesterPrecon.Info
066 445 Mechanical Engineering STEOP
Course requires the completion of the introductory and orientation phase
066 473 Chemical and Process Engineering STEOP
Course requires the completion of the introductory and orientation phase
066 482 Mechanical Engineering - Management STEOP
Course requires the completion of the introductory and orientation phase
066 646 Computational Science and Engineering

Literature

No lecture notes are available.

Previous knowledge

Continuum mechanics of solids

Linear finite element method

Language

English