# 309.021 Mechanics of solid bodies, exercises 1 This course is in all assigned curricula part of the STEOP.\$(function(){PrimeFaces.cw("Tooltip","widget_j_id_20",{id:"j_id_20",showEffect:"fade",hideEffect:"fade",target:"isAllSteop"});});This course is in at least 1 assigned curriculum part of the STEOP.\$(function(){PrimeFaces.cw("Tooltip","widget_j_id_22",{id:"j_id_22",showEffect:"fade",hideEffect:"fade",target:"isAnySteop"});}); 2023S 2022S 2021S 2020S 2019S 2018S 2016W 2015W 2014W 2013W 2012W 2011W 2010W 2009W 2008W 2007W 2006W 2005W 2004W 2003W 2002W 2001W

2022S, UE, 2.0h, 2.0EC

## Properties

• Semester hours: 2.0
• Credits: 2.0
• Type: UE Exercise
• LectureTube course
• Format: Hybrid

## Learning outcomes

After successful completion of the course, students are able to:

• identify given forces like those of springs, gliding friction, gravity, and also (other) distributed forces, and to formulate them mathematically for the solution of equilibrium problems;
• apply the conditions of equilibrium both graphically and arithmetically to find the constraining forces in a statically determined system;
• determine the stress resultants in beam-like structures as functions of a characteristic coordinate and to represent them graphically;
• determine in adhesion problems the limits of equilibrium with respect both to the onset of sliding and to tilting graphically as well as arithmetically and to find the necessary minimum coefficient of adhesion for equilibrium; moreover, to check systems for self-locking behaviour; furthermore, to find the forces in systems where bodies move with sliding friction (and constant velocity) both graphically and arithmetically;
• determine the forces in (statically determined) trusses both graphically and arithmetically;
• determine the center of gravity of bodies and plane areas by integration, Guldin's rule, and appropriate combination of sub-bodies/areas with already determined centers of gravity;
• determine the moments of inertia and products of inertia both for bodies and plane areas by integration and application of Steiner's law;
• explicate the basics of linear elasticity theory and to apply Hooke's law;
• find the stresses and displacements in straight Euler-Bernoulli bars caused by tension/compression, bending, and torsion both for statically determined and undetermined systems; to this aim, to apply the principle of superposition and Mohr's method, too;
• explicate the effects of shear forces in straight bars;
• explicate the basics of the statics of ropes and chains under the influence of gravity

## Subject of course

In the exercise units, particular exercise examples are solved. The subject of each example is tailored to the topic of the respective lecture. Essential parts of each solution procedure are (i) finding adequate physical approaches, (ii) their accurate mathematical formulation and computation, (iii) the physical interpretation of the mathematical solutions, and (iv) the critical analysis of the obtained results.

## Teaching methods

Exercise

The students are encouraged to autonomously approach solutions for the exercise examples. Students are thereby guided and supported by the lecturer. In addition, tutors are in attendance to individually answer emerging questions. Conclusively, the lecturer presents a feasible solution for each example, refers briefly to the respective theoretical basis and remarks alternative solution strategies.

## Mode of examination

Immanent

The further course is organised via TUWEL.
For general questions to the course, please consult the FAQs in TUWEL. If this does not answer your question, please use the forum in TUWEL. You are welcome to use this forum for technical discussion as well!
Please address individual questions w.r.t. the organisation of the course exclusively to mechanik1UE@tuwien.ac.at.
Individual technical questions can be discussed in the tutorial sessions, which can be booked in the TUWEL course.

On Monday, 1.3.2021, a collective demonstration unit will be held online from 11:00 to 12:00.

## Course dates

DayTimeDateLocationDescription
Wed12:00 - 13:0002.03.2022FH Hörsaal 1 - MWB Vorbesprechung gemeinsam mit VO / Live-Stream über TUWEL-Kurs verfügbar
Wed15:00 - 17:0016.03.2022FH Hörsaal 1 - MWB Vorrechenübung

## Examination modalities

The assessment consists of two elements.

# 1. Peer-Review

During the semester, four example problems are to be solved as a homework and to be submitted via TUWEL. In addition, submissions of other participant are to be examined and evaluated. These problems are comparable w.r.t scope and difficulty to those of the final test, and similar criteria are to be used for the evaluation. More details on the Peer-Review procedure are found in the TUWEL section of the course.

For a positive assessment of the element "Peer-Review", three of four solutions and reviews have to be submitted. Incomplete or inconclusive submissions are not accepted.

No certificate for the course will be issued if you de-register from the course prior to the first Peer-Review.

# 2. Test

A positive assessment for the Peer-Review element is required to participate at the final test. The test covers the entire subject of the exercises and determines the grading for the course.

For a positive assessment of the test, the following items have to be documented on the test's sheet:

1. All necessary physical/mathematical approaches and relevant sketches to comprehend the chosen solution strategy.
2. The essential steps of the solution process.
3. The final result, as an expression of the given quantities.

## Exams

DayTimeDateRoomMode of examinationApplication timeApplication modeExam
Mon16:00 - 18:0019.06.2023FH Hörsaal 1 - MWB assessedno application-Test (Paralleltermin)
Mon16:00 - 18:0019.06.2023Informatikhörsaal - ARCH-INF assessedno application-Test (Paralleltermin)
Mon16:00 - 18:0019.06.2023EI 7 Hörsaal - ETIT assessedno application-Test (Paralleltermin)
Mon16:00 - 18:0019.06.2023GM 1 Audi. Max.- ARCH-INF assessedno application-Test (Paralleltermin)
Mon16:00 - 18:0019.06.2023EI 9 Hlawka HS - ETIT assessedno application-Test (Paralleltermin)
Wed10:00 - 12:0019.07.2023HS 18 Czuber - MB assessedno application-Ersatztest (Paralleltermin)
Wed10:00 - 12:0019.07.2023FH Hörsaal 1 - MWB assessedno application-Ersatztest (Paralleltermin)
Wed10:00 - 12:0019.07.2023GM 1 Audi. Max.- ARCH-INF assessedno application-Ersatztest (Paralleltermin)
Wed10:00 - 12:0019.07.2023GM 5 Praktikum HS- TCH assessedno application-Ersatztest (Paralleltermin)
Wed10:00 - 12:0019.07.2023GM 2 Radinger Hörsaal - TCH assessedno application-Ersatztest (Paralleltermin)

## Group dates

GroupDayTimeDateLocationDescription
Gruppe 1 - UE Mechanik 1 Mo14Mon14:00 - 16:0028.03.2022 - 20.06.2022Sem.R. DA grün 02 B 309.021 Mechanics of solid bodies, exercises 1 Gruppe 1 - UE Mechanik 1 Mo14
Gruppe 1 - UE Mechanik 1 Mo14Mon15:00 - 17:0027.06.2022Sem.R. DA grün 02 B 309.021 Mechanics of solid bodies, exercises 1 Gruppe 1 - UE Mechanik 1 Mo14
Gruppe 2 - UE Mechanik 1 Mo14Mon14:00 - 16:0021.03.2022 - 20.06.2022EI 4 Reithoffer HS 309.021 Mechanics of solid bodies, exercises 1 Gruppe 2 - UE Mechanik 1 Mo14
Gruppe 2 - UE Mechanik 1 Mo14Mon15:00 - 17:0027.06.2022EI 4 Reithoffer HS 309.021 Mechanics of solid bodies, exercises 1 Gruppe 2 - UE Mechanik 1 Mo14
Gruppe 3 - UE Mechanik 1 Mo16Mon16:00 - 18:0021.03.2022 - 27.06.2022FH Hörsaal 2 309.021 Mechanics of solid bodies, exercises 1 Gruppe 3 - UE Mechanik 1 Mo16
Gruppe 4 - UE Mechanik 1 Mo16Mon16:00 - 18:0021.03.2022 - 27.06.2022Sem.R. DA grün 03 A 309.021 Mechanics of solid bodies, exercises 1 Gruppe 4 - UE Mechanik 1 Mo16
Gruppe 5 - UE Mechanik 1 Di14Tue14:00 - 16:0022.03.2022 - 28.06.2022Seminarraum BA 02A 309.021 Mechanics of solid bodies, exercises 1 Gruppe 5 - UE Mechanik 1 Di14
Gruppe 6 - UE Mechanik 1 Di14Tue14:00 - 16:0022.03.2022 - 28.06.2022Seminarraum BA 08A - MB 309.021 Mechanics of solid bodies, exercises 1 Gruppe 6 - UE Mechanik 1 Di14
Gruppe 7 - UE Mechanik 1 Di16Tue16:00 - 18:0022.03.2022 - 28.06.2022Sem.R. DA grün 05 309.021 Mechanics of solid bodies, exercises 1 Gruppe 7 - UE Mechanik 1 Di16
Gruppe 8 - UE Mechanik 1 Di16Tue16:00 - 18:0022.03.2022 - 28.06.2022Seminarraum BA 05 - MB 309.021 Mechanics of solid bodies, exercises 1 Gruppe 8 - UE Mechanik 1 Di16
Gruppe 9 - UE Mechanik 1 Mi14Wed14:00 - 16:0023.03.2022 - 29.06.2022GM 8/9 - Hörsaal des Internationalen Wiener Motorensymposiums 309.021 Mechanics of solid bodies, exercises 1 Gruppe 9 - UE Mechanik 1 Mi14
Gruppe 10 - UE Mechanik 1 Mi14Wed14:00 - 16:0023.03.2022 - 29.06.2022Seminarraum BA 02A 309.021 Mechanics of solid bodies, exercises 1 Gruppe 10 - UE Mechanik 1 Mi14
Gruppe 11 ONLINE - UE Mechanik MI14Wed14:00 - 16:0023.03.2022 - 29.06.2022 Abwicklung über den TUWEL-Kurs309.021 Mechanics of solid bodies, exercises 1 Gruppe 11 ONLINE - UE Mechanik MI14
Gruppe 12 - UE Mechanik 1 Mi16Wed16:00 - 18:0023.03.2022 - 29.06.2022Seminarraum BA 05 - MB 309.021 Mechanics of solid bodies, exercises 1 Gruppe 12 - UE Mechanik 1 Mi16
Gruppe 13 - UE Mechanik 1 Mi16Wed16:00 - 18:0023.03.2022 - 29.06.2022Seminarraum 363 309.021 Mechanics of solid bodies, exercises 1 Gruppe 13 - UE Mechanik 1 Mi16
Gruppe 14 - UE Mechanik 1 Do14Thu14:00 - 16:0024.03.2022 - 30.06.2022Seminarraum 363 309.021 Mechanics of solid bodies, exercises 1 Gruppe 14 - UE Mechanik 1 Do14
Gruppe 15 - UE Mechanik 1 Do14Thu14:00 - 16:0024.03.2022 - 30.06.2022Seminarraum BA 02A 309.021 Mechanics of solid bodies, exercises 1 Gruppe 15 - UE Mechanik 1 Do14
Gruppe 16 - UE Mechanik 1 Do16Thu16:00 - 18:0024.03.2022 - 30.06.2022Sem.R. DA grün 03 A 309.021 Mechanics of solid bodies, exercises 1 Gruppe 16 - UE Mechanik 1 Do16
Gruppe 17 - UE Mechanik 1 Do16Thu16:00 - 18:0024.03.2022 - 30.06.2022Seminarraum BA 05 - MB 309.021 Mechanics of solid bodies, exercises 1 Gruppe 17 - UE Mechanik 1 Do16
Gruppe 18 - UE Mechanik 1 Do16Thu16:00 - 18:0024.03.2022 - 30.06.2022Seminarraum BD 03 309.021 Mechanics of solid bodies, exercises 1 Gruppe 18 - UE Mechanik 1 Do16

## Course registration

Begin End Deregistration end
10.02.2022 09:00 25.04.2022 12:00 31.03.2022 12:00

### Precondition

The student has to be enrolled for at least one of the studies listed below

## Group Registration

GroupRegistration FromTo
Gruppe 1 - UE Mechanik 1 Mo1407.03.2022 12:0018.03.2022 12:00
Gruppe 2 - UE Mechanik 1 Mo1407.03.2022 12:0018.03.2022 12:00
Gruppe 3 - UE Mechanik 1 Mo1607.03.2022 12:0018.03.2022 12:00
Gruppe 4 - UE Mechanik 1 Mo1607.03.2022 12:0018.03.2022 12:00
Gruppe 5 - UE Mechanik 1 Di1407.03.2022 12:0018.03.2022 12:00
Gruppe 6 - UE Mechanik 1 Di1407.03.2022 12:0018.03.2022 12:00
Gruppe 7 - UE Mechanik 1 Di1607.03.2022 12:0018.03.2022 12:00
Gruppe 8 - UE Mechanik 1 Di1607.03.2022 12:0018.03.2022 12:00
Gruppe 9 - UE Mechanik 1 Mi1407.03.2022 12:0018.03.2022 12:00
Gruppe 10 - UE Mechanik 1 Mi1407.03.2022 12:0018.03.2022 12:00
Gruppe 11 ONLINE - UE Mechanik MI1407.03.2022 12:0018.03.2022 12:00
Gruppe 12 - UE Mechanik 1 Mi1607.03.2022 12:0018.03.2022 12:00
Gruppe 13 - UE Mechanik 1 Mi1607.03.2022 12:0018.03.2022 12:00
Gruppe 14 - UE Mechanik 1 Do1407.03.2022 12:0018.03.2022 12:00
Gruppe 15 - UE Mechanik 1 Do1407.03.2022 12:0018.03.2022 12:00
Gruppe 16 - UE Mechanik 1 Do1607.03.2022 12:0018.03.2022 12:00
Gruppe 17 - UE Mechanik 1 Do1607.03.2022 12:0018.03.2022 12:00
Gruppe 18 - UE Mechanik 1 Do1607.03.2022 12:0018.03.2022 12:00

## Curricula

Study CodeSemesterPrecon.Info
033 245 Mechanical Engineering 2. Semester
Course belongs to the introductory and orientation phase ("Studieneingangs- und Orientierungsphase")
033 282 Mechanical Engineering - Management 2. Semester
Course belongs to the introductory and orientation phase ("Studieneingangs- und Orientierungsphase")
700 Mechanical Engineering 1. Semester
740 Industrial Engineering-Management 1. Semester

## Literature

### Lehrunterlagen:

Die Angaben der Übungsbeispiele stehen für Sie im TUWEL-Kurs als Download zur Verfügung.
Die Lösungen zu den Beispielen werden sukzessive im TUWEL-Kurs freigeschalten.

Eine gedruckte Version der Angaben kann zum Selbstkostenpreis von € 2,00 während der Sekretariatssprechstunden am Institut erworben werden (MO 15-16 Uhr, DO 10-11 Uhr).

### Zur LVA passende Lehr- und Übungsbücher:

Gamer, U.; Mack, W.:
Mechanik - Ein einführendes Lehrbuch für Studierende der technischen Wissenschaften.
Springer, 1999. ISBN: 3-211-82854-0.

Mack, W. , Lugner, P. , Plöchl, M.:Angewandte Mechanik – Aufgaben und Lösungen aus Statik und Festigkeitslehre, Springer Verlag Wien, 2006. ISBN: 3-211-25672-5

Mestemacher, F.:Grundkurs Technische Mechanik - Statik der Starrkörper, Elastostatik, Dynamik. Spektrum Akademischer Verlag, 2008. ISBN: 978-3-8274-1838-8

Parkus, H.:Mechanik der festen Körper. Springer, 2005. ISBN: 978-3-211-80777-4

Magnus, K.; Müller-Slany H.H.:
Grundlagen der Technischen Mechanik. Teubner Stuttgart, 2006. ISBN: 978-3-211-80777-4

Gross, D.; Hauger, W.; Schröder, J. ; Wall, W. A.:Technische Mechanik 1: Statik. Springer Berlin Heidelberg, 2019. ISBN: 978-3-662-59156-7

Gross, D.; Ehlers, W.; Wriggers, P.:
Formeln und Aufgaben zur Technischen Mechanik 1: Statik. Springer Berlin Heidelberg, 2016.ISBN: 978-3-662-52715-3

## Previous knowledge

Basics in trigonometry, calculus aund vector algebra.

German