Nach positiver Absolvierung der Lehrveranstaltung sind Studierende in der Lage zu Verstehen Vorteile und Nachteile von verschiedene Modellierungsmethoden, sie sind in dem modernen Werkstoffwissenschaft angewendet. Ein wichtiger Punkt ist Übersicht über die typische Aufgaben, für die diese Methoden benutzt können.
The ultimate goal is to encourage Materials Scientists not to be afraid of modelling, and to take it as a complementary technique to experiments, thus gaining access to ¿the best of both worlds¿.
The course will start with defining a place for modelling in modern materials research. Subsequently, the main modelling techniques including Finite Element Method (FEM) in continuum mechanics, Discrete Dislocation Dynamics (DDD) and theory of dislocations, Monte Carlo (MC), Molecular Dynamics (MD), and quantum mechanical ab initio Density Functional Theory (DFT) will be presented. A particular stress will be paid to the underlying principles, which define to the areas of applicability (system size/length-scale, time-scale, temperature), and strengths and weaknesses of individual techniques.
The second part of the course will more closely focus on the Density Functional Theory, and a special attention will be paid to its practical use for Materials Science problems. It will be shown how the structural parameters can be optimised, demonstrated the difference (and importance) between chemical and dynamical stability of systems, and discussed possibilities of treating extended disordered systems. Other topics will include elasticity, surface related properties, thermodynamics, or electron and optical spectroscopies. All topics will be presented on examples, and will be critically discussed against experimental results.