199.110 Introduction to Responsible AI
Diese Lehrveranstaltung ist in allen zugeordneten Curricula Teil der STEOP.
Diese Lehrveranstaltung ist in mindestens einem zugeordneten Curriculum Teil der STEOP.

2023S, VU, 2.0h, 3.0EC

Merkmale

  • Semesterwochenstunden: 2.0
  • ECTS: 3.0
  • Typ: VU Vorlesung mit Übung
  • Format der Abhaltung: Präsenz

Lernergebnisse

Nach positiver Absolvierung der Lehrveranstaltung sind Studierende in der Lage...

After successful completion of the course, students will be able to understand the concepts, ethics, governance, methods, tools, and regulation behind responsible AI; as well as to have the basic knowledge on bias and fairness, interpretability and explainability, and algorithmic audits. Finally, they will understand how to design responsible algorithmic systems.

Inhalt der Lehrveranstaltung

Content

1. Introduction (2 hours)
Why responsible AI?
Examples of current issues

2. Human Intelligence (2 hours)
The brain
Consciousness and intelligence

3. Artificial Intelligence (2 hours)
Overview
Limitations of data
Limitations of methods
Evaluation problems

4. AI Ethics (2 hours)
Values
Instrumental principles
Ethical risk assessments

5. AI Governance (2 hours)
People and processes
Tools

6. Bias and Fairness (2 hours)
Definitions
Measures
Challenges

7. Interpretable & Explainable AI (2 hours)
Interpretability
Explainability
Challenges

8. Algorithmic Audits (2 hours)
Main concepts
Detailed example

9. Data & AI Regulation (2 hours)
Data privacy
AI Act (EU)
AI Bill of Rights (US)

10. Design of Responsible AI Systems (2 hours)
Human-centered AI
AI for Good

 

Methoden

Lecture with discussions, as well as short presentations from students (flipped class).

Prüfungsmodus

Prüfungsimmanent

Weitere Informationen

The lecturer of this course will be Ricardo Baeza-Yates, rbaeza@acm.org.

This is a guest professor course of the TU Wien Informatics Doctoral School. It is targeted to Doctoral Students of the Faculty of Informatics, but, subject to availability of free seats, open to all PhD students and interested Master students.

 

Course schedule:

The course will be held from June 5 - June 28.

 

Vortragende Personen

Institut

LVA Termine

TagZeitDatumOrtBeschreibung
Mo.10:00 - 12:0005.06.2023 - 26.06.2023FAV Hörsaal 2 Introduction to Responsible AI
Mi.10:00 - 12:0007.06.2023Seminarraum FAV 05 (Seminarraum 186) Introduction to Responsible AI
Mi.10:00 - 12:0014.06.2023 - 21.06.2023Seminarraum FAV 05 (Seminarraum 186) Introduction to Responsible AI
Fr.10:00 - 12:0016.06.2023 - 23.06.2023Seminarraum 127 Introduction to Responsible AI
Mi.10:00 - 12:0028.06.2023FAV Hörsaal 2 Lecture
Introduction to Responsible AI - Einzeltermine
TagDatumZeitOrtBeschreibung
Mo.05.06.202310:00 - 12:00FAV Hörsaal 2 Introduction to Responsible AI
Mi.07.06.202310:00 - 12:00Seminarraum FAV 05 (Seminarraum 186) Introduction to Responsible AI
Mo.12.06.202310:00 - 12:00FAV Hörsaal 2 Introduction to Responsible AI
Mi.14.06.202310:00 - 12:00Seminarraum FAV 05 (Seminarraum 186) Introduction to Responsible AI
Fr.16.06.202310:00 - 12:00Seminarraum 127 Introduction to Responsible AI
Mo.19.06.202310:00 - 12:00FAV Hörsaal 2 Introduction to Responsible AI
Mi.21.06.202310:00 - 12:00Seminarraum FAV 05 (Seminarraum 186) Introduction to Responsible AI
Fr.23.06.202310:00 - 12:00Seminarraum 127 Introduction to Responsible AI
Mo.26.06.202310:00 - 12:00FAV Hörsaal 2 Introduction to Responsible AI
Mi.28.06.202310:00 - 12:00FAV Hörsaal 2 Lecture

Leistungsnachweis

Proposal of essay topic (10%), written essay (60%) plus short presentation (30%).

LVA-Anmeldung

Von Bis Abmeldung bis
13.02.2023 00:00 05.06.2023 23:59

Anmeldemodalitäten

Please register in TISS.

Curricula

StudienkennzahlVerbindlichkeitSemesterAnm.Bed.Info
PhD TU Wien Informatics Doctoral School Keine Angabe

Literatur

Reading Material

  1. Lauren Smiley, Aftermath of a Self-Driving Tragedy, Wired, 2022.
  2. Blaise Agüera y Arcas, Margaret Mitchell & Alexander Todorov, Physiognomy’s New Clothes, Medium, 2917.
  3. John Searle, Minds, Brains, and Programs, Behavioral and Brain Sciences, 1980.
  4. Ricardo Baeza-Yates, Bias on the Web, Communications of ACM, 2018.

Vorkenntnisse

Basic notions of calculus, algorithms, and programming.

Weitere Informationen

  • Anwesenheitspflicht!

Sprache

Englisch