199.094 Defeasible Reasoning
Diese Lehrveranstaltung ist in allen zugeordneten Curricula Teil der STEOP.
Diese Lehrveranstaltung ist in mindestens einem zugeordneten Curriculum Teil der STEOP.

2022S, VU, 2.0h, 3.0EC

Merkmale

  • Semesterwochenstunden: 2.0
  • ECTS: 3.0
  • Typ: VU Vorlesung mit Übung
  • Format der Abhaltung: Präsenz

Lernergebnisse

Nach positiver Absolvierung der Lehrveranstaltung sind Studierende in der Lage...

+++FURTHER INFORMATION TO BE ANNOUNCED++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Inhalt der Lehrveranstaltung

The lecturer of this course will be Thomas Meyer / University of Cape Town.


Course description

Non-monotonic reasoning is an area of research in which various forms of defeasible inference are investigated. This course focuses on an elegant, comprehensive and well-studied framework for non-monotonic reasoning first proposed by Kraus, Lehmann and Magidor in the early 1990s, and often referred to as the KLM approach to defeasible reasoning. The framework is worth studying for two reasons. Firstly, it provides for a thorough analy- sis of some formal properties that any consequence relation deemed as appropriate in a non-monotonic setting ought to satisfy.  Such formal properties, which resemble those of a Gentzen-style proof system,  play a central role in assessing how intuitive the obtained results are. Secondly, it allows for defeasible reasoning to be reduced to a serious of classical reasoning checks, sometimes without blowing up the computational complexity compared to the underlying classical case.

Tentative topics: i) A brief overview of the most important approaches to non-monotonic reasoning. ii) Defining propositional defeasible reasoning. iii) Propositional algorithms for defeasible reasoning. iv) A brief introduction to description logics. v) Lifting defeasible reasoning to description logics. vi) Algorithms and implementations of defeasible reasoning for description logics.

Methoden

Information to be announced as soon as possible.

Prüfungsmodus

Prüfungsimmanent

Weitere Informationen

This is a guest professor course of the TU Wien Informatics Doctoral School.

The course is open to all PhD students and interested Master students.


 

Vortragende Personen

Institut

LVA Termine

TagZeitDatumOrtBeschreibung
Di.10:00 - 12:0017.05.2022 - 14.06.2022Seminarraum FAV EG C (Seminarraum Gödel) Defeasible Reasoning
Do.13:00 - 15:0019.05.2022Seminarraum 126 Defeasible Reasoning
Mi.10:00 - 12:0025.05.2022Seminarraum FAV EG C (Seminarraum Gödel) Defeasible Reasoning
Do.10:00 - 12:0002.06.2022Seminarraum FAV EG C (Seminarraum Gödel) Defeasible Reasoning
Mi.10:00 - 12:0008.06.2022Seminarraum FAV EG B (Seminarraum von Neumann) Defeasible Reasoning
Do.10:00 - 12:0009.06.2022Seminarraum FAV EG B (Seminarraum von Neumann) Defeasible Reasoning
Mi.10:00 - 12:0015.06.2022Seminarraum FAV EG C (Seminarraum Gödel) Defeasible Reasoning
Defeasible Reasoning - Einzeltermine
TagDatumZeitOrtBeschreibung
Di.17.05.202210:00 - 12:00Seminarraum FAV EG C (Seminarraum Gödel) Defeasible Reasoning
Do.19.05.202213:00 - 15:00Seminarraum 126 Defeasible Reasoning
Di.24.05.202210:00 - 12:00Seminarraum FAV EG C (Seminarraum Gödel) Defeasible Reasoning
Mi.25.05.202210:00 - 12:00Seminarraum FAV EG C (Seminarraum Gödel) Defeasible Reasoning
Di.31.05.202210:00 - 12:00Seminarraum FAV EG C (Seminarraum Gödel) Defeasible Reasoning
Do.02.06.202210:00 - 12:00Seminarraum FAV EG C (Seminarraum Gödel) Defeasible Reasoning
Mi.08.06.202210:00 - 12:00Seminarraum FAV EG B (Seminarraum von Neumann) Defeasible Reasoning
Do.09.06.202210:00 - 12:00Seminarraum FAV EG B (Seminarraum von Neumann) Defeasible Reasoning
Di.14.06.202210:00 - 12:00Seminarraum FAV EG C (Seminarraum Gödel) Defeasible Reasoning
Mi.15.06.202210:00 - 12:00Seminarraum FAV EG C (Seminarraum Gödel) Defeasible Reasoning

Leistungsnachweis

Information to be announced as soon as possible.

LVA-Anmeldung

Von Bis Abmeldung bis
16.02.2022 00:00 06.05.2022 23:59

Anmeldemodalitäten

Please register in TISS.

Curricula

Literatur

Recommended literature: A series of papers, ranging from the original 1990 KLM paper to recent work published in 2020, will be provided.

Vorkenntnisse

Required background: Basic familiarity with propositional logic is required. Familiarity with description logics is recommended, but is not required.

Weitere Informationen

  • Anwesenheitspflicht!

Sprache

Englisch