194.055 Sicherheit, Privacy und Erklärbarkeit in Maschinellem Lernen
Diese Lehrveranstaltung ist in allen zugeordneten Curricula Teil der STEOP.
Diese Lehrveranstaltung ist in mindestens einem zugeordneten Curriculum Teil der STEOP.

2021S, VU, 2.0h, 3.0EC
TUWEL

Merkmale

  • Semesterwochenstunden: 2.0
  • ECTS: 3.0
  • Typ: VU Vorlesung mit Übung
  • Format der Abhaltung: Distance Learning

Lernergebnisse

Nach positiver Absolvierung der Lehrveranstaltung sind Studierende in der Lage...

- Identify threats to privacy of individuals in machine learning datasets

- Select fitting solutions for privacy-preserving machine learning

- Understand attack vectors on machine learning models, and how attacls can be detected and mitigated

- Select fitting concepts for explainable and interpretable machine learning

Inhalt der Lehrveranstaltung

  • Techniken zur Wahrung der Privatsphäre, um sensible Informationen in den Eingabedaten zu anonymisieren, z.B. um den Datenaustausch zu erleichtern, mit besonderem Schwerpunkt auf den Auswirkungen auf den Nutzen der Daten und der darauf trainierten Modelle. Dazu gehören z.B. die k-Anonymity und verwandte Modelle wie l-Diversity sowie Differential Privacy  etc.
  • Techniken zur Wahrung der Privatsphäre, wie z.B. Differential Privacy, um Informationslecks an trainierten Modellen zu verhindern.
  • Angriffsvektoren auf Modelle des maschinellen Lernens, z.B. membership attacks  und Model Stealing, Adversary Input Generation, und wie man sie einschränkt.
  • Backdoor-Einbettung, um das Verhalten von scheinbar gutartigen Modellen für böswillige Zwecke zu manipulieren.
  • Vertraulichkeitserhaltende Berechnung von Modellen des maschinellen Lernens, z.B. mit secure multi-party computation, und homomorphen Verschlüsselungsansätzen.
  • Erklärbarkeit von Modellen des maschinellen Lernens, um ein besseres Verständnis und Vertrauen in die Modelle zu ermöglichen, z.B. durch Visualisierung, Regelextraktion, Zero-Shot Learning.

 

Methoden

Der Kurs enthält Vorlesungen und Übungen. Die Vorlesungen werden während der anhaltenden Einschränkungen der Präsenzlehre live über Zoom gestreamt. Links zu den Zoom Sessions werden in TUWEL bereitgestellt.  Die Übungen beinhalten die Anwendung von datenschutzkonformen, sicheren und erklärbaren maschinellen Lernverfahren für verschiedene Datensätze und die Implementierung dieser Verfahren. Die Übungen werden zu Hause vorbereitet und in den Übungsstunden vorgestellt/besprochen.


Prüfungsmodus

Prüfungsimmanent

Weitere Informationen

Die SPEML Vorlesung wird on-line abgehalten

Achtung:  Bis auf weiteres muss die Vorlesung on-line abgehalten werden. Die Eineiten finden live in einer Zoom Session statt, der Link zur Zoom Session wird über den TUWEL Kurs verfügbar gemacht werden. Es gibt keine Video-Aufzeichnungen. Die Vorlesungszeiten bleiben unverändert wie in der Hörsaalreservierung unten angegeben. Präsenz im Hörsaal ist derzeit NICHT erlaubt. Sollten die TU-Regeln zu einem späteren Zeitpunkt eine Präsenzvorlesung erlauben, so werden wir dies zeitgerecht ankündigen.

Vortragende

Institut

LVA Termine

TagZeitDatumOrtBeschreibung
Do.13:00 - 15:0004.03.2021 - 24.06.2021FAV Hörsaal 1 - INF Sicherheit, Privacy und Erklärbarkeit in Maschinellem Lernen
Sicherheit, Privacy und Erklärbarkeit in Maschinellem Lernen - Einzeltermine
TagDatumZeitOrtBeschreibung
Do.04.03.202113:00 - 15:00FAV Hörsaal 1 - INF Sicherheit, Privacy und Erklärbarkeit in Maschinellem Lernen
Do.11.03.202113:00 - 15:00FAV Hörsaal 1 - INF Sicherheit, Privacy und Erklärbarkeit in Maschinellem Lernen
Do.18.03.202113:00 - 15:00FAV Hörsaal 1 - INF Sicherheit, Privacy und Erklärbarkeit in Maschinellem Lernen
Do.25.03.202113:00 - 15:00FAV Hörsaal 1 - INF Sicherheit, Privacy und Erklärbarkeit in Maschinellem Lernen
Do.15.04.202113:00 - 15:00FAV Hörsaal 1 - INF Sicherheit, Privacy und Erklärbarkeit in Maschinellem Lernen
Do.22.04.202113:00 - 15:00FAV Hörsaal 1 - INF Sicherheit, Privacy und Erklärbarkeit in Maschinellem Lernen
Do.29.04.202113:00 - 15:00FAV Hörsaal 1 - INF Sicherheit, Privacy und Erklärbarkeit in Maschinellem Lernen
Do.06.05.202113:00 - 15:00FAV Hörsaal 1 - INF Sicherheit, Privacy und Erklärbarkeit in Maschinellem Lernen
Do.20.05.202113:00 - 15:00FAV Hörsaal 1 - INF Sicherheit, Privacy und Erklärbarkeit in Maschinellem Lernen
Do.27.05.202113:00 - 15:00FAV Hörsaal 1 - INF Sicherheit, Privacy und Erklärbarkeit in Maschinellem Lernen
Do.10.06.202113:00 - 15:00FAV Hörsaal 1 - INF Sicherheit, Privacy und Erklärbarkeit in Maschinellem Lernen
Do.17.06.202113:00 - 15:00FAV Hörsaal 1 - INF Sicherheit, Privacy und Erklärbarkeit in Maschinellem Lernen
Do.24.06.202113:00 - 15:00FAV Hörsaal 1 - INF Sicherheit, Privacy und Erklärbarkeit in Maschinellem Lernen

Leistungsnachweis

- Lösen von Übungsaufgaben unter Verwendung eines Software-Toolkits nach Wahl (e.g. Python scikit-learn, Matlab, R, WEKA, ...)

- Schriftliche Prüfung (closed book) - mit höchster Wahrscheinlichkeit on-line via TUWEL. Sollte die Pandemie  Präsenzprüfungen zum vorgesehenen Zeitpunkt zulassen würden wir auf eine Präsenzprüfung umstellen. Bei geringen Anmeldezahlen kann die Prüfung auch mündlich durchgeführt werden (ebenfalls, abhängig von der Entwicklung der Pandemie-Situation voraussichtlich on-line)

Prüfungen

TagZeitDatumOrtPrüfungsmodusAnmeldefristAnmeldungPrüfung
Do.16:00 - 18:0011.03.2021 beurteilt08.02.2021 00:00 - 04.03.2021 23:59in TISSExam (last retake SS 2020)

LVA-Anmeldung

Von Bis Abmeldung bis
21.01.2021 00:00 31.03.2021 23:59 31.03.2021 23:59

Curricula

Literatur

Es wird kein Skriptum zur Lehrveranstaltung angeboten.

Vorkenntnisse

184.702 Machine Learning

Vorausgehende Lehrveranstaltungen

Sprache

Englisch