194.035 Recommender Systems
Diese Lehrveranstaltung ist in allen zugeordneten Curricula Teil der STEOP.
Diese Lehrveranstaltung ist in mindestens einem zugeordneten Curriculum Teil der STEOP.

2020S, VU, 2.0h, 3.0EC


  • Semesterwochenstunden: 2.0
  • ECTS: 3.0
  • Typ: VU Vorlesung mit Übung


Nach positiver Absolvierung der Lehrveranstaltung sind Studierende in der Lage:

(1) comprehend the basic concepts of recommender systems,

(2) distinguish the differences among various recommendation methods,

(3) “recommend” appropriate recommendation techniques and evaluation strategies when faced with a task,

(4) implement basic recommendations methods and evaluate them over real datasets and tasks.

Inhalt der Lehrveranstaltung

  • Introduction
  • Collaborative Filtering (CF)
  • Model-based CF -- Matrix Factorization
  • Content-based Recommenders
  • Evaluation Methods
  • Sequence-aware Recommenders
  • Special Topics (e.g., Ethics, Group Recommenders, Social Recommenders)


The programming assignments are to be done in Python using Jupyter Notebooks. A short introduction to using Jupyter Notebooks will be given. In class, there will be a discussion of the assignments, solving any problems encountered, and at then end the solutions will be overviewed.

The project is to be done in any programming language and environment. There will be dedicated lectures for the project. Also, students will be motivated (by bonus points) to actively help each other.



Weitere Informationen

This course is an overview of the general research area of Recommender Systems. The goal of these systems is to address the information overload problem (multitude of choices) people face in everyday life. Examples include selecting news articles to read, a movie to watch, a travel destination, friends to connect with, a restaurant to dine, buying a product.

The course will introduce the basic concepts, that is, users, items, preferences, explicit/implicit feedback, and proceed to explain important tasks, such as modeling a user’s preferences and an item’s attractiveness, collecting feedback from users, predicting the degree of interest of a user for an item, evaluating effectiveness. For these tasks the course will overview the most important approaches taken, and discuss the state-of-the-art. Towards the end of the course, certain advanced specialized topics, recently being investigated by the research community, will be discussed.

The students will be asked to implement simple approaches using real-life datasets, and work on a real-case task (such as an ACM RecSys Challenge).



LVA Termine

Di.10:00 - 12:0003.03.2020 - 10.03.2020FAV Hörsaal 1 - INF VU 194.035
Recommender Systems - Einzeltermine
Di.03.03.202010:00 - 12:00FAV Hörsaal 1 - INF VU 194.035
Di.10.03.202010:00 - 12:00FAV Hörsaal 1 - INF VU 194.035


The course involves programming assingments and a project, all in groups of 3-5 students, and a final written exam.

- 4 Programming Assignments in Python using Jupyter Notebooks, where you fill in the missing code. (20% of total grade)

- 1 Project in any programming language. (30% of total grade)

- The written exam is open book with open questions and some T/F statements. (50% of total grade)


Von Bis Abmeldung bis
13.02.2020 09:00 31.03.2020 23:59 31.03.2020 23:59


066 645 Data Science
066 926 Business Informatics


Es wird kein Skriptum zur Lehrveranstaltung angeboten.


  • no course prerequisites

  • background in Machine Learning, Information Retrieval, E-Commerce is welcome but not required

  • all necessary concepts are introduced in course

  • content on slides alone suffice