192.098 Introduction to the Coq proof assistant
Diese Lehrveranstaltung ist in allen zugeordneten Curricula Teil der STEOP.
Diese Lehrveranstaltung ist in mindestens einem zugeordneten Curriculum Teil der STEOP.

2020S, VU, 2.0h, 3.0EC, wird geblockt abgehalten


  • Semesterwochenstunden: 2.0
  • ECTS: 3.0
  • Typ: VU Vorlesung mit Übung


Nach positiver Absolvierung der Lehrveranstaltung sind Studierende in der Lage to understand and use the Coq proof assistant; in particular to formalize propositional logic, quantifiers inductive types and inductive predicates

Inhalt der Lehrveranstaltung

This course gives an introduction to the Coq proof assistant:

Coq is a formal proof management system. It provides a formal language to write mathematical definitions, executable algorithms and theorems together with an environment for semi-interactive development of machine-checked proofs. Typical applications include the certification of properties of programming languages (e.g. the CompCert compiler certification project, the Verified Software Toolchain for verification of C programs, or the Iris framework for concurrent separation logic), the formalization of mathematics (e.g. the full formalization of the Feit-Thompson theorem, or homotopy type theory), and teaching.

The first course will take place on-line as scheduled:
  - Tuesday May 5, 2020, 13:00-15:00

4 lecture sessions

  1. Introduction to Coq, Propositional Logic
  2. Quantifiers, equality and all that
  3. Inductive types
  4. Inductive predicates

4 lab sessions

  1. Your first proofs, propositional logic
  2. First Order Logic, Higher Order Logic
  3. Proofs by induction on nat
  4. Proofs by induction on proofs



On line



Weitere Informationen

The course will be held blocked May-June

Ects Breakdown

 8.0 h attendance of lecture (4 days x 2h)
 8.0 h self study at home (4 x 2h)
 8.0 h attendance to lab sessions (4 days x 2h)
 8.0 h homework (4 x 2h)
32.0 h project preparation  
 1.0 h project presentation
 9.0 h preparation for oral exam
 1.0 h oral exam
75.0 h = 3 Ects




To be decided


Von Bis Abmeldung bis
18.03.2020 10:00 04.05.2020 10:00 30.05.2020 10:00



Es wird kein Skriptum zur Lehrveranstaltung angeboten.


familiarity with first-order classical logic or with a functional programming language