185.A60 Higher-order Logic
Diese Lehrveranstaltung ist in allen zugeordneten Curricula Teil der STEOP.
Diese Lehrveranstaltung ist in mindestens einem zugeordneten Curriculum Teil der STEOP.

2019S, VU, 2.0h, 3.0EC
Quinn ECTS Erhebung

Merkmale

  • Semesterwochenstunden: 2.0
  • ECTS: 3.0
  • Typ: VU Vorlesung mit Übung

Ziele der Lehrveranstaltung

A formal introduction to strong logical formalisms, demonstrating their varying expressivity and limitations by establishing their properties via proof; also touching on the application of these formalisms in modeling and specification in computer science.

Inhalt der Lehrveranstaltung

Limits of first-order definability, syntax and semantics of second-order logic, expressive power of second-order logic, second-order arithmetic, simple type theory, typed lambda calculi, higher-order logic, Henkin semantics, interactive theorem proving in higher-order logic

Weitere Informationen

First meeting: Tuesday, 7 May 2019, 15:00, seminar room "Gödel".

Vortragende Personen

  • Ramanayake, Don Revantha Shiyan

Institut

Leistungsnachweis

Three assignments

LVA-Anmeldung

Von Bis Abmeldung bis
13.12.2018 00:00 01.07.2019 23:00

Curricula

StudienkennzahlVerbindlichkeitSemesterAnm.Bed.Info
066 931 Logic and Computation Gebundenes Wahlfach

Literatur

- Stefan Hetzl: Higher-order logic. Lecture notes.*main reference*

- Stefan Hetzl: Mathematical Logic 2. Lecture notes.*Prerequisite material on first-order logic*

- Johan Van Benthem and Kees Doets. Higher-order logic. Book chapter. Handbook of Philosophical Logic. Vol. 164, pages 275-329.*

- Daniel Leivant: Higher-order Logic, Handbook of Logic in Artificial Intelligence and Logic Programming (2) 1994, pages 229-322.*

- Peter B. Andrews: An Introduction to Mathematical Logic and Type Theory: To Truth through Proof, Academic Press, 1986

- Dale Miller and Gopalan Nadathur: Programming with Higher-Order Logic, Cambridge University Press, 2012

- Chad E. Brown: Automated Reasoning in Higher-Order Logic, College Publications, 2007

- Henk Barendregt, Wil Dekkers and Richard Statman: Lambda Calculus with Types, 2013

-  Manzano: Extensions of first-order logic, 1996.

-  M.H. Sorensen and P. Urzyczyn: Lectures on the Curry-Howard Isomorphism, 2006

Vorkenntnisse

This is an advanced course in logic. Firm knowledge of classical first-order logic (formulas, models, proofs) is a prerequisite. In the first couple of lecture I will overview the key definitions and results from first-order logic.

Sprache

Englisch