184.702 Machine Learning
Diese Lehrveranstaltung ist in allen zugeordneten Curricula Teil der STEOP.
Diese Lehrveranstaltung ist in mindestens einem zugeordneten Curriculum Teil der STEOP.

2020W, VU, 3.0h, 4.5EC
TUWEL

Merkmale

  • Semesterwochenstunden: 3.0
  • ECTS: 4.5
  • Typ: VU Vorlesung mit Übung
  • Format der Abhaltung: Distance Learning

Lernergebnisse

Nach positiver Absolvierung der Lehrveranstaltung sind Studierende in der Lage..

- Formulate problems as specific Machine Learning tasks

- Understand of a range of machine learning algorithms and their characteristics

- Select the fitting methods for a specific learning goal

- Explain data preprocessing techniques

- Evaluate the methods for their suitability

Inhalt der Lehrveranstaltung

Principles of Supervised and Unsupervised Machine Learning, including pre-processing and Data Preparation, as well as Evaluation of Learning Systems. Machine Learning models discussed may include e.g. Decision Tree Learning, Model Selection, Bayesian Networks, Regression techniques, Support Vector Machines, Deep Learning, Random Forests as well as ensemble methods.

Preliminary talk: 7.10.2020, via Zoom: https://tuwien.zoom.us/j/99982734642?pwd=YUhncjNUdDhGZXB0Y3ZlZG45S3NNUT09

Methoden

The course contains classroom lectures and exercises. Exercises include the application of machine learning techniques for various data sets and implementation of machine learning algorithms. The exercises are prepared at home and will be presented/discussed during the exercise classes. 

Prüfungsmodus

Prüfungsimmanent

Weitere Informationen

This course will be held completely in TUWEL - all lecture materials and news about the lecture will be made available there, and all questions regarding the course should be asked in the TUWEL forum *only*, not via TISS.


To get access to the TUWEL course, just apply to the group in TISS, and then follow the TUWEL link above

 

ECTS Breakdown:

8 classes (including prepration): 22 h

4 classes for presentations/discussions (including preparation): 12

Assignments: 46.5 h

exam: 32 h

---------------

total: 112.5 h

Vortragende

Institut

LVA Termine

TagZeitDatumOrtBeschreibung
Mi.16:00 - 18:0007.10.2020 - 27.01.2021EI 8 Pötzl HS Vorlesung
Machine Learning - Einzeltermine
TagDatumZeitOrtBeschreibung
No records found.

Leistungsnachweis

- Solving of exercises regarding experiments in machine learning, using a software toolkit of the student's choice (e.g. Python scikit-learn, Matlab, R, WEKA, ...)

- Written exam at the end of the semester

Prüfungen

TagZeitDatumOrtPrüfungsmodusAnmeldefristAnmeldungPrüfung
Mi.14:00 - 16:0009.12.2020GM 1 Audi. Max.- ARCH-INF schriftlich21.10.2020 00:00 - 22.11.2020 23:59in TISS*Cancelled due to TU CoVid regulations* Exam (3rd retake SS 2020, last retake for WS 2019)
Mo.14:00 - 16:0025.01.2021GM 1 Audi. Max.- ARCH-INF schriftlich02.01.2021 00:00 - 22.01.2021 23:59in TISSExam (main date WS2020, 4th & final retake SS 2020)
Fr. - 19.03.2021beurteilt29.01.2021 12:00 - 17.03.2021 00:00in TISSExam (date not yet confirmed, depends on the COVID situation!)
Mi. - 19.05.2021beurteilt22.04.2021 00:00 - 17.05.2021 23:59in TISSExam (date not yet confirmed, depends on the COVID situation!)
Do. - 24.06.2021schriftlich31.05.2021 00:00 - 23.06.2021 23:59in TISSExam FH1 (apply at the main exam, you will be assigned manually to a lecture room)
Do. - 24.06.2021schriftlich31.05.2021 00:00 - 23.06.2021 23:59in TISSExam FH5 (apply at the main exam, you will be assigned manually to a lecture room)
Do. - 24.06.2021schriftlich31.05.2021 00:00 - 23.06.2021 23:59in TISSExam FH8 Nöbauer HS (apply at the main exam, you will be assigned manually to a lecture room)
Do.08:00 - 10:0024.06.2021Prechtlsaal großer Teil - Achtung! Werkraum, kein Hörsaal! schriftlich19.05.2021 00:00 - 21.06.2021 12:00in TISSExam - apply here (main date summer semester, last retake winter semester)
Do.08:00 - 10:0024.06.2021 schriftlich19.05.2021 00:00 - 21.06.2021 12:00in TISSExam - apply here (main date summer semester, last retake winter semester)
Do.08:00 - 10:0024.06.2021 schriftlich19.05.2021 00:00 - 21.06.2021 12:00in TISSExam - apply here (main date summer semester, last retake winter semester)
Do.08:00 - 10:0024.06.2021 schriftlich19.05.2021 00:00 - 21.06.2021 12:00in TISSExam - apply here (main date summer semester, last retake winter semester)
Do.08:00 - 10:0024.06.2021 schriftlich31.05.2021 00:00 - 23.06.2021 23:59in TISSExam FH6 (apply at the main exam, you will be assigned manually to a lecture room)

LVA-Anmeldung

Von Bis Abmeldung bis
29.07.2020 00:00 19.10.2020 23:59 19.10.2020 23:59

Anmeldemodalitäten:

Acceptance to the course will be by the lecturers. Priority is given to

1.) Students that have this course as a compulsory or elective course (i.e. most computer science studies)

2.) ERASMUS students that have Machine Learning in their learning agreement.

3.) PhD students from the Faculty of Informatics

4.) Students that are currently in a bachelor programme of any of the studies mentioned in 1.), and are finishing their studies in the current semester. You will need to contact the lectureres (Rudolf Mayer, Nysret Musliu) and state your expected graduation, and which master programme you will continue

5.) If there are still free places afterwards, they will be assigned to master and PhD students from other faculties, and finally to all other students from other faculties. You need to contact the lecturers (Rudolf Mayer, Nysret Musliu) and state why the course is important for your studies. Note that the registration can be confirmed only when for the registration period ends.

Curricula

Literatur

Es wird kein Skriptum zur Lehrveranstaltung angeboten.

Vorkenntnisse

Self-Organising Systems (188.413) offers complementary topics in unsupervised data analysis. Information Retrieval (188.412) applies principles from Data Mining, Machine Learning

Problem Solving and Search in Artificial Intelligence (181.190) teaches some problem solving techniques that can be used in machine learning 

 

Begleitende Lehrveranstaltungen

Vertiefende Lehrveranstaltungen

Sprache

Englisch