184.702 Machine Learning
Diese Lehrveranstaltung ist in allen zugeordneten Curricula Teil der STEOP.
Diese Lehrveranstaltung ist in mindestens einem zugeordneten Curriculum Teil der STEOP.

2019W, VU, 3.0h, 4.5EC
TUWEL

Merkmale

  • Semesterwochenstunden: 3.0
  • ECTS: 4.5
  • Typ: VU Vorlesung mit Übung

Lernergebnisse

Nach positiver Absolvierung der Lehrveranstaltung sind Studierende in der Lage..

- Formulate problems as specific Machine Learning tasks

- Understand of a range of machine learning algorithms and their characteristics

- Select the fitting methods for a specific learning goal

- Explain data preprocessing techniques

- Evaluate the methods for their suitability

 

.


 

Inhalt der Lehrveranstaltung

Principles of Supervised and Unsupervised Machine Learning, including pre-processing and Data Preparation, as well as Evaluation of Learning Systems. Machine Learning models discussed may include e.g. Decision Tree Learning, Model Selection, Bayesian Networks, Regression techniques, Support Vector Machines, Random Forests as well as ensemble methods.

Preliminary talk: 2.10. 2019

Methoden

The course contains classroom lectures and exercises. Exercises include the application of machine learning techniques for various data sets and implementation of machine learning algorithms. The exercises are prepared at home and will be presented/discussed during the exercise classes. 

Prüfungsmodus

Prüfungsimmanent

Weitere Informationen

This course will be held completely in TUWEL - all lecture materials and news about the lecture will be made available there, and all questions regarding the course should be asked in the TUWEL forum *only*, not via TISS.


To get access to the TUWEL course, just apply to the group in TISS, and then follow the TUWEL link above

 

ECTS Breakdown:

8 classes (including prepration): 22 h

4 classes for presentations/discussions (including preparation): 12

Assignments: 46.5 h

exam: 32 h

---------------

total: 112.5 h

Vortragende Personen

Institut

LVA Termine

TagZeitDatumOrtBeschreibung
Mi.16:00 - 18:0002.10.2019 - 29.01.2020EI 8 Pötzl HS - QUER Vorlesung
Mo.13:00 - 16:0016.12.2019Seminarraum FAV 01 B (Seminarraum 187/2) Presentations Exercise 2
Di.10:00 - 12:3017.12.2019FAV Hörsaal 2 Presentations Exercise 2
Di.14:00 - 18:0017.12.2019Seminarraum FAV 01 C (Seminarraum 188/2) Presentations Exercise 2
Mi.12:00 - 14:0018.12.2019FAV Hörsaal 2 Presentations Exercise 2
Do.11:00 - 16:0019.12.2019Seminarraum FAV 01 B (Seminarraum 187/2) Presentations Exercise 2
Do.12:00 - 17:0019.12.2019EI 8 Pötzl HS - QUER Presentations Exercise 2
Do.13:00 - 17:3030.01.2020FAV Hörsaal 2 Presentations Exercise 3
Fr.13:30 - 17:0031.01.2020FAV Hörsaal 2 Presentations Exercise 3
Machine Learning - Einzeltermine
TagDatumZeitOrtBeschreibung
Mi.02.10.201916:00 - 18:00EI 8 Pötzl HS - QUER Vorlesung
Mi.09.10.201916:00 - 18:00EI 8 Pötzl HS - QUER Vorlesung
Mi.16.10.201916:00 - 18:00EI 8 Pötzl HS - QUER Vorlesung
Mi.23.10.201916:00 - 18:00EI 8 Pötzl HS - QUER Vorlesung
Mi.30.10.201916:00 - 18:00EI 8 Pötzl HS - QUER Vorlesung
Mi.06.11.201916:00 - 18:00EI 8 Pötzl HS - QUER Vorlesung
Mi.13.11.201916:00 - 18:00EI 8 Pötzl HS - QUER Vorlesung
Mi.20.11.201916:00 - 18:00EI 8 Pötzl HS - QUER Vorlesung
Mi.27.11.201916:00 - 18:00EI 8 Pötzl HS - QUER Vorlesung
Mi.04.12.201916:00 - 18:00EI 8 Pötzl HS - QUER Vorlesung
Mi.11.12.201916:00 - 18:00EI 8 Pötzl HS - QUER Vorlesung
Mo.16.12.201913:00 - 16:00Seminarraum FAV 01 B (Seminarraum 187/2) Presentations Exercise 2
Di.17.12.201910:00 - 12:30FAV Hörsaal 2 Presentations Exercise 2
Di.17.12.201914:00 - 18:00Seminarraum FAV 01 C (Seminarraum 188/2) Presentations Exercise 2
Mi.18.12.201912:00 - 14:00FAV Hörsaal 2 Presentations Exercise 2
Mi.18.12.201916:00 - 18:00EI 8 Pötzl HS - QUER Vorlesung
Do.19.12.201911:00 - 16:00Seminarraum FAV 01 B (Seminarraum 187/2) Presentations Exercise 2
Do.19.12.201912:00 - 17:00EI 8 Pötzl HS - QUER Presentations Exercise 2
Mi.08.01.202016:00 - 18:00EI 8 Pötzl HS - QUER Vorlesung
Mi.15.01.202016:00 - 18:00EI 8 Pötzl HS - QUER Vorlesung

Leistungsnachweis

- Solving of exercises regarding experiments in machine learning, using a software toolkit of the student's choice (e.g. Python scikit-learn, Matlab, R, WEKA, ...)

- Written exam at the end of the semester

Prüfungen

TagZeitDatumOrtPrüfungsmodusAnmeldefristAnmeldungPrüfung
Fr.16:00 - 18:0018.10.2024GM 1 Audi. Max.- ARCH-INF schriftlich16.09.2024 00:00 - 16.10.2024 23:59in TISSExam (2024S 1st re-take)
Di.18:00 - 20:0003.12.2024EI 7 Hörsaal - ETIT beurteilt29.10.2024 00:00 - 29.11.2024 23:59in TISSExam (2024S 2nd & final retake)
Di.12:00 - 14:0021.01.2025GM 1 Audi. Max.- ARCH-INF beurteilt29.12.2024 00:00 - 16.01.2025 23:59in TISSExam (2024W main date)
Do.13:00 - 15:0006.03.2025EI 7 Hörsaal - ETIT beurteilt05.02.2025 00:00 - 03.03.2025 23:59in TISSExam (2024W 1st re-take)
Di.17:00 - 19:0029.04.2025Informatikhörsaal - ARCH-INF beurteilt28.03.2025 23:00 - 24.04.2025 23:59in TISSExam (2024W 2nd & final re-take)
Mi.15:00 - 17:0025.06.2025GM 1 Audi. Max.- ARCH-INF schriftlich26.05.2025 00:00 - 22.06.2025 23:59in TISSExam (2025S main date)

LVA-Anmeldung

Von Bis Abmeldung bis
31.07.2019 00:00 16.10.2019 23:59 16.10.2019 23:59

Anmeldemodalitäten

Acceptance to the course will be by the lecturers. Priority is given to

1.) Students that have this course as a compulsory or elective course (i.e. most computer science studies)

2.) ERASMUS students that have Machine Learning in their learning agreement.

3.) PhD students from the Faculty of Informatics

4.) Students that are currently in a bachelor programme of any of the studies mentioned in 1.), and are finishing their studies in the current semester. You will need to contact the lectureres and state your expected graduation, and which master programme you will continue

5.) If there are still free places afterwards, they will be assigned to master and PhD students from other faculties, and finally to all other students from other faculties. You need to contact the lecturers and state why the course is important for your studies.

Curricula

StudienkennzahlVerbindlichkeitSemesterAnm.Bed.Info
066 011 DDP Computational Logic (Erasmus-Mundus) Keine Angabe
066 645 Data Science Keine Angabe
066 646 Computational Science and Engineering Keine Angabe
066 926 Business Informatics Gebundenes Wahlfach
066 931 Logic and Computation Gebundenes Wahlfach
066 937 Software Engineering & Internet Computing Gebundenes Wahlfach

Literatur

Es wird kein Skriptum zur Lehrveranstaltung angeboten.

Vorkenntnisse

Self-Organising Systems (188.413) offers complementary topics in unsupervised data analysis. Information Retrieval (188.412) applies principles from Data Mining, Machine Learning

Problem Solving and Search in Artificial Intelligence (181.190) teaches some problem solving techniques that can be used in machine learning 

 

Begleitende Lehrveranstaltungen

Vertiefende Lehrveranstaltungen

Sprache

Englisch