184.702 Machine Learning
This course is in all assigned curricula part of the STEOP.
This course is in at least 1 assigned curriculum part of the STEOP.

2018W, VU, 3.0h, 4.5EC
TUWEL

Properties

  • Semester hours: 3.0
  • Credits: 4.5
  • Type: VU Lecture and Exercise

Aim of course

Attention: after the winter term 2018/2019, this lecture will be moved to the summer term. The first lecture cycle in summer term is in summer term 2019, the following edition will be summer term 2020. 

Principles of Supervised Machine Learning, including algorithms, meta-algorithms, evaluation, ...

Subject of course

Principles of Supervised and Unsupervised Machine Learning, including pre-processing and Data Preparation, as well as Evaluation of Learning Systems. Machine Learning models discussed may include e.g. Decision Tree Learning, Model Selection, Bayesian Networks, Regression techniques, Support Vector Machines, Random Forests as well as ensemble methods.

Didactical Concept:
-Lectures
-Exercises:
students will compare different machine algorithms for particular data sets, and have to implement a machine learning algorithm - Presentation of algorithms by students - Discussion of reports that summarize the comparison of machine learning algorithms

Assessment: is based on written exam, report, and implemented machine learning algorithms

 

Preliminary talk: 3.10. 2018

Additional information

Attention: after the winter term 2018/2019, this lecture will be moved to the summer term. The first lecture cycle in summer term is in summer term 2019, the following edition will be summer term 2020. 

This course will be held completely in TUWEL - all lecture materials and news about the lecture will be made available there, and all questions regarding the course should be asked in the TUWEL forum *only*, not via TISS.

To get access to the TUWEL course, just apply to the group in TISS, and then follow the TUWEL link above

 

ECTS Breakdown:

8 classes (including prepration): 22 h

4 classes for presentations/discussions (including preparation): 12

Assignments: 46.5 h

exam: 32 h

---------------

total: 112.5 h

 

Lecturers

Institute

Course dates

DayTimeDateLocationDescription
Wed16:00 - 18:0003.10.2018 - 30.01.2019EI 8 Pötzl HS - QUER Vorlesung
Wed10:00 - 13:0028.11.2018Seminarraum FAV 01 A (Seminarraum 183/2) Presentations Exercise 1
Thu15:00 - 17:3029.11.2018Seminarraum FAV 01 A (Seminarraum 183/2) Presentations Exercise 1
Fri12:00 - 15:0030.11.2018Seminarraum FAV 01 A (Seminarraum 183/2) Presentations Exercise 1
Tue15:00 - 18:0008.01.2019Seminarraum FAV EG C (Seminarraum Gödel) Presentations Exercise 2
Wed10:00 - 13:0009.01.2019Seminarraum FAV 01 A (Seminarraum 183/2) Presentations Exercise 2
Wed11:00 - 13:0023.01.2019Seminarraum FAV EG C (Seminarraum Gödel) Presentations Exercise 3
Wed14:00 - 18:0023.01.2019Seminarraum FAV 01 B (Seminarraum 187/2) Presentations Exercise 3
Wed12:30 - 17:0030.01.2019Seminarraum FAV EG B (Seminarraum von Neumann) Presentations Exercise 3
Thu12:00 - 17:0031.01.2019FAV Hörsaal 3 Zemanek (Seminarraum Zemanek) Presentations Exercise 3
Machine Learning - Single appointments
DayDateTimeLocationDescription
Wed03.10.201816:00 - 18:00EI 8 Pötzl HS - QUER Vorlesung
Wed10.10.201816:00 - 18:00EI 8 Pötzl HS - QUER Vorlesung
Wed17.10.201816:00 - 18:00EI 8 Pötzl HS - QUER Vorlesung
Wed24.10.201816:00 - 18:00EI 8 Pötzl HS - QUER Vorlesung
Wed31.10.201816:00 - 18:00EI 8 Pötzl HS - QUER Vorlesung
Wed07.11.201816:00 - 18:00EI 8 Pötzl HS - QUER Vorlesung
Wed14.11.201816:00 - 18:00EI 8 Pötzl HS - QUER Vorlesung
Wed21.11.201816:00 - 18:00EI 8 Pötzl HS - QUER Vorlesung
Wed28.11.201810:00 - 13:00Seminarraum FAV 01 A (Seminarraum 183/2) Presentations Exercise 1
Wed28.11.201816:00 - 18:00EI 8 Pötzl HS - QUER Vorlesung
Thu29.11.201815:00 - 17:30Seminarraum FAV 01 A (Seminarraum 183/2) Presentations Exercise 1
Fri30.11.201812:00 - 15:00Seminarraum FAV 01 A (Seminarraum 183/2) Presentations Exercise 1
Wed05.12.201816:00 - 18:00EI 8 Pötzl HS - QUER Vorlesung
Wed12.12.201816:00 - 18:00EI 8 Pötzl HS - QUER Vorlesung
Wed19.12.201816:00 - 18:00EI 8 Pötzl HS - QUER Vorlesung
Tue08.01.201915:00 - 18:00Seminarraum FAV EG C (Seminarraum Gödel) Presentations Exercise 2
Wed09.01.201910:00 - 13:00Seminarraum FAV 01 A (Seminarraum 183/2) Presentations Exercise 2
Wed09.01.201916:00 - 18:00EI 8 Pötzl HS - QUER Vorlesung
Wed16.01.201916:00 - 18:00EI 8 Pötzl HS - QUER Vorlesung
Wed23.01.201911:00 - 13:00Seminarraum FAV EG C (Seminarraum Gödel) Presentations Exercise 3

Examination modalities

Exercises and written exam

Exams

DayTimeDateRoomMode of examinationApplication timeApplication modeExam
Fri16:00 - 18:0018.10.2024GM 1 Audi. Max.- ARCH-INF written16.09.2024 00:00 - 16.10.2024 23:59TISSExam (2024S 1st re-take)
Tue18:00 - 20:0003.12.2024EI 7 Hörsaal - ETIT assessed29.10.2024 00:00 - 29.11.2024 23:59TISSExam (2024S 2nd & final retake)
Tue12:00 - 14:0021.01.2025GM 1 Audi. Max.- ARCH-INF assessed29.12.2024 00:00 - 16.01.2025 23:59TISSExam (2024W main date)
Thu13:00 - 15:0006.03.2025EI 7 Hörsaal - ETIT assessed05.02.2025 00:00 - 03.03.2025 23:59TISSExam (2024W 1st re-take)
Tue17:00 - 19:0029.04.2025Informatikhörsaal - ARCH-INF assessed28.03.2025 23:00 - 24.04.2025 23:59TISSExam (2024W 2nd & final re-take)
Wed15:00 - 17:0025.06.2025GM 1 Audi. Max.- ARCH-INF written26.05.2025 00:00 - 22.06.2025 23:59TISSExam (2025S main date)

Course registration

Begin End Deregistration end
01.08.2018 00:00 17.10.2018 23:59 20.10.2018 23:59

Curricula

Literature

No lecture notes are available.

Previous knowledge

Self-Organising Systems (188.413) offers complementary topics in unsupervised data analysis. Information Retrieval (188.412) applies principles from Data Mining, Machine Learning

Problem Solving and Search in Artificial Intelligence (181.190) teaches some problem solving techniques that can be used in machine learning 

 

Accompanying courses

Continuative courses

Language

English