Please be advised: Due to system maintenance the access module is not available for changes, Please accept our apologies for any inconvenience.

142.090 Statistics
This course is in all assigned curricula part of the STEOP.
This course is in at least 1 assigned curriculum part of the STEOP.

2019S, VO, 2.0h, 3.0EC


  • Semester hours: 2.0
  • Credits: 3.0
  • Type: VO Lecture

Aim of course

The aim is to make the students familiar with the most important statistical methods that are employed in the analysis of experimental data. An essential part of the lecture is the demonstration of the methods on real or simulated data sets that are representative for the experimental situation. All algorithms are implemented in Matlab and will be given to the students along with the data sets.

Subject of course

1. Descriptive statistics: How do I present my data in a concise, but meaningful way? 2. Stochastic modeling: How do I construct a model of my data that correctly describes the random aspects of an experiment, and which models are relevant in the experimenter's practice? 3. Parametric estimation, confidence intervals: How do I estimate physical quantities from my data, and how do I asses the uncertainty of the estimates? 4. Linear regression: Is there a correlation between two or more observed quantities, and how is it quantified? 5. Modelling of background, robust methods: How do I separate the signal from the experimental background, and how can I minimize the influence of the background? 6. Parametric and non-parametric tests: How do I test whether my data show significant deviations from theory? 7. Simulation: Why should I simulate my experiment and how can I do it?



Course dates

Thu08:00 - 10:0007.03.2019 - 27.06.2019FH Hörsaal 2 Lecture
Tue08:00 - 10:0025.06.2019FH Hörsaal 7 - GEO Prüfungsvorbereitung
Fri09:00 - 10:0005.07.2019Sem.R. DB gelb 05 A Prüfungseinsicht
Thu09:00 - 11:0026.09.2019FH Hörsaal 7 - GEO Prüfungsvorbereitung
Wed09:00 - 10:0009.10.2019Sem.R. DB gelb 05 A Prüfungseinsicht
Statistics - Single appointments
Thu07.03.201908:00 - 10:00FH Hörsaal 2 Lecture
Thu14.03.201908:00 - 10:00FH Hörsaal 2 Lecture
Thu21.03.201908:00 - 10:00FH Hörsaal 2 Lecture
Thu28.03.201908:00 - 10:00FH Hörsaal 2 Lecture
Thu04.04.201908:00 - 10:00FH Hörsaal 2 Lecture
Thu11.04.201908:00 - 10:00FH Hörsaal 2 Lecture
Thu02.05.201908:00 - 10:00FH Hörsaal 2 Lecture
Thu09.05.201908:00 - 10:00FH Hörsaal 2 Lecture
Thu16.05.201908:00 - 10:00FH Hörsaal 2 Lecture
Thu23.05.201908:00 - 10:00FH Hörsaal 2 Lecture
Thu06.06.201908:00 - 10:00FH Hörsaal 2 Lecture
Thu13.06.201908:00 - 10:00FH Hörsaal 2 Lecture
Tue25.06.201908:00 - 10:00FH Hörsaal 7 - GEO Prüfungsvorbereitung
Thu27.06.201908:00 - 10:00FH Hörsaal 2 Lecture
Fri05.07.201909:00 - 10:00Sem.R. DB gelb 05 A Prüfungseinsicht
Thu26.09.201909:00 - 11:00FH Hörsaal 7 - GEO Prüfungsvorbereitung
Wed09.10.201909:00 - 10:00Sem.R. DB gelb 05 A Prüfungseinsicht

Examination modalities

Written examination. A formula collection of up to 8 pages is allowed. 


DayTimeDateRoomMode of examinationApplication timeApplication modeExam
Wed10:00 - 12:0001.02.2023Sem.R. DA grün 03 B written02.12.2022 09:00 - 27.01.2023 12:00TISS5. Prüfung 2022S
Thu09:00 - 11:0029.06.2023FH Hörsaal 4 written30.05.2023 09:00 - 21.06.2023 18:00TISS1. Prüfung 2023S

Course registration

Not necessary




The slides and the handout (4 slides per page) can be downloaded by the students.

The course is also based on my ebook  "Wahrscheinlichkeitsrechnung und Statistik: Für Studierende der Physik" (in German). It can be downloaded free of charge from:

For the exam you will also need the tables.

Further recommended books:

L. Lyons, A practical guide to data analysis for physical science students, Cambridge University Press, 1991.

L. Lyons, Statistics for Nuclear and Particle Physicists, Cambridge University Press, 1986.

W. Stahel, Statistische Datenanalyse: Eine Einführung für Naturwissenschaftler, Vieweg+Teubner, 2007.

V. Blobel und E. Lohrmann, Statistische und numerische Methoden der Datenanalyse, Teubner, 1998. L. Fahrmeir et al., Statistik: Der Weg zur Datenanalyse, Springer, 2007.

S. M. Ross, Statistik für Ingenieure und Naturwissenschaftler, Spektrum, 2006.

Previous knowledge

Knowledge of Matlab helpful, but not required