138.058 Computational Materials Science
This course is in all assigned curricula part of the STEOP.
This course is in at least 1 assigned curriculum part of the STEOP.

2023W, VU, 4.0h, 6.0EC

Properties

  • Semester hours: 4.0
  • Credits: 6.0
  • Type: VU Lecture and Exercise
  • Format: Hybrid

Learning outcomes

After successful completion of the course, students are able to comprehend the materials presented in the lecture and to draw conclusions from them, as well as to actively communicate the contents presented during the lecture.

Subject of course

1) Electronic structure with density functional theory

2) Wannier functions and construction of lattice models

3) Introduction to many-body methods, Fock space, exact diagonalization

4) Kondo effect and impurity physics

5) Disorder and coherent potential approximation

Preliminary days for the computer exercise are:

1) Oct. 25 2) Nov 8 3) Nov 29 4) Dec 13  5) Jan 10

 

 

Teaching methods

Lecture with integrated computational exercises

 

 

Mode of examination

Immanent

Additional information

 First lecture: Tue. Oct 3rd, 2023 starting at 13:15

 

Besides the lectures on Tue there will be 5 computer exercises on Wedn.

 

----------------------------------------

Vorbesprechung aller Wahlvorlesungen des IFP:

Montag, 02.10.2023, 15.00 - 16.00 Uhr, FH HS 6

Lecturers

Institute

Course dates

DayTimeDateLocationDescription
Tue13:00 - 15:0003.10.2023 - 23.01.2024FH Hörsaal 2 Computational Materials Science
Wed09:00 - 13:0004.10.2023 - 24.01.2024EDV Praktikum Physik Computational Materials Science Exercises
Fri09:00 - 12:0022.03.2024EDV Praktikum Physik Vortraege Computational Materials Science
Computational Materials Science - Single appointments
DayDateTimeLocationDescription
Tue03.10.202313:00 - 15:00FH Hörsaal 2 Computational Materials Science
Wed04.10.202309:00 - 13:00EDV Praktikum Physik Computational Materials Science Exercises
Tue10.10.202313:00 - 15:00FH Hörsaal 2 Computational Materials Science
Wed11.10.202309:00 - 13:00EDV Praktikum Physik Computational Materials Science Exercises
Tue17.10.202313:00 - 15:00FH Hörsaal 2 Computational Materials Science
Wed18.10.202309:00 - 13:00EDV Praktikum Physik Computational Materials Science Exercises
Tue24.10.202313:00 - 15:00FH Hörsaal 2 Computational Materials Science
Wed25.10.202309:00 - 13:00EDV Praktikum Physik Computational Materials Science Exercises
Tue31.10.202313:00 - 15:00FH Hörsaal 2 Computational Materials Science
Tue07.11.202313:00 - 15:00FH Hörsaal 2 Computational Materials Science
Wed08.11.202309:00 - 13:00EDV Praktikum Physik Computational Materials Science Exercises
Tue14.11.202313:00 - 15:00FH Hörsaal 2 Computational Materials Science
Tue21.11.202313:00 - 15:00FH Hörsaal 2 Computational Materials Science
Wed22.11.202309:00 - 13:00EDV Praktikum Physik Computational Materials Science Exercises
Tue28.11.202313:00 - 15:00FH Hörsaal 2 Computational Materials Science
Wed29.11.202309:00 - 13:00EDV Praktikum Physik Computational Materials Science Exercises
Tue05.12.202313:00 - 15:00FH Hörsaal 2 Computational Materials Science
Wed06.12.202309:00 - 13:00EDV Praktikum Physik Computational Materials Science Exercises
Tue12.12.202313:00 - 15:00FH Hörsaal 2 Computational Materials Science
Wed13.12.202309:00 - 13:00EDV Praktikum Physik Computational Materials Science Exercises

Examination modalities

Certificate

 

The exam will be based on going beyond one of the exercises and presenting a 10 min talk on it.

 

Course registration

Begin End Deregistration end
25.09.2023 19:00 16.10.2023 19:00

Curricula

Study CodeObligationSemesterPrecon.Info
066 434 Materials Sciences Not specified
066 461 Technical Physics Mandatory elective
066 646 Computational Science and Engineering Not specified

Literature

Lecture notes and exercises will be made available via TISS.

Recommended further reading:

https://www.cond-mat.de/events/correl11/manuscripts/kunes.pdf    (Lecture notes to Wannier functions)

https://arxiv.org/pdf/cond-mat/0211443.pdf  (Lecture notes to density functional theory and band structure methods)

Previous knowledge

Quantum mechanics (Schrodinger equation, Pauli principle) and linear aglebra (Hermitean and unitary operators, eigenvalues and eigenvectors)

Basics of solid state theory (Bloch theorem, reciprocal space, Fermi energy and Fermi surface)

Language

English