136.007 Geometry, Topology and Physics I
This course is in all assigned curricula part of the STEOP.
This course is in at least 1 assigned curriculum part of the STEOP.

2019W, VU, 2.0h, 3.0EC

Properties

  • Semester hours: 2.0
  • Credits: 3.0
  • Type: VU Lecture and Exercise

Learning outcomes

After successful completion of the course, students are able to understand and use basic tools from differential geometry and topology as needed for particle physics, general relativity and string theory.


Subject of course

1. Topological spaces and homotopy

2. Manifolds and homology

3. Differentiable aspects of manifolds

4. Vector bundles, connections and Riemannian geometry

Teaching methods

Blackboard presentation and homework assignments

Mode of examination

Immanent

Additional information

First lecture: October 2, 12:15 - 13:45 in EI 9 (Hlawka HS).

 

Lecturers

Institute

Course dates

DayTimeDateLocationDescription
Wed12:00 - 14:0002.10.2019 - 30.10.2019EI 9 Hlawka HS GTP1 (Skarke)
Wed12:15 - 13:4506.11.2019 - 29.01.2020Hörsaal 15 GTP1 (Skarke)
Geometry, Topology and Physics I - Single appointments
DayDateTimeLocationDescription
Wed02.10.201912:00 - 14:00EI 9 Hlawka HS GTP1 (Skarke)
Wed09.10.201912:00 - 14:00EI 9 Hlawka HS GTP1 (Skarke)
Wed16.10.201912:00 - 14:00EI 9 Hlawka HS GTP1 (Skarke)
Wed23.10.201912:00 - 14:00EI 9 Hlawka HS GTP1 (Skarke)
Wed30.10.201912:00 - 14:00EI 9 Hlawka HS GTP1 (Skarke)
Wed06.11.201912:15 - 13:45Hörsaal 15 GTP1 (Skarke)
Wed13.11.201912:15 - 13:45Hörsaal 15 GTP1 (Skarke)
Wed20.11.201912:15 - 13:45Hörsaal 15 GTP1 (Skarke)
Wed27.11.201912:15 - 13:45Hörsaal 15 GTP1 (Skarke)
Wed04.12.201912:15 - 13:45Hörsaal 15 GTP1 (Skarke)
Wed11.12.201912:15 - 13:45Hörsaal 15 GTP1 (Skarke)
Wed18.12.201912:15 - 13:45Hörsaal 15 GTP1 (Skarke)
Wed08.01.202012:15 - 13:45Hörsaal 15 GTP1 (Skarke)
Wed15.01.202012:15 - 13:45Hörsaal 15 GTP1 (Skarke)
Wed22.01.202012:15 - 13:45Hörsaal 15 GTP1 (Skarke)
Wed29.01.202012:15 - 13:45Hörsaal 15 GTP1 (Skarke)

Examination modalities

By homework

Course registration

Not necessary

Curricula

Literature

The lecture will follow only partly the notes by M. Kreuzer.    Further literature includes M. Nakahara: Geometry, Topology and Physics, IOP Publishing, Bristol 1990.

Previous knowledge

Only mathematical knowledge that can be expected in the 5th semester is required.

Language

English