135.044 Mathematical Methods in Physics
This course is in all assigned curricula part of the STEOP.
This course is in at least 1 assigned curriculum part of the STEOP.

2020W, UE, 2.0h, 3.0EC
TUWEL

Properties

  • Semester hours: 2.0
  • Credits: 3.0
  • Type: UE Exercise
  • Format: Hybrid

Learning outcomes

After successful completion of the course, students are able to handle tensors, to transform between coordinate systems, and to solve partial differential equations in different ways (depending on the problem) with eigenvalue and boundary-value problems. Students learn to present their results in front of small groups.

Subject of course

Tensors, differential equations, generalized functions, special functions, Green's functions for partial differential equations

Teaching methods

Students independently calculate problems and present those in front of small groups. Their understanding as well as the presentation itself are evaluated by the tutor.

Mode of examination

Written

Additional information

Please see the German page for detailed information and exercise sheets.

Lecturers

Institute

Course dates

DayTimeDateLocationDescription
Fri09:00 - 11:0002.10.2020 - 15.01.2021FH Hörsaal 6 - TPH Methoden d.Theor.Physik UE
Mathematical Methods in Physics - Single appointments
DayDateTimeLocationDescription
Fri02.10.202009:00 - 11:00FH Hörsaal 6 - TPH Methoden d.Theor.Physik UE
Fri09.10.202009:00 - 11:00FH Hörsaal 6 - TPH Methoden d.Theor.Physik UE
Fri16.10.202009:00 - 11:00FH Hörsaal 6 - TPH Methoden d.Theor.Physik UE
Fri23.10.202009:00 - 11:00FH Hörsaal 6 - TPH Methoden d.Theor.Physik UE
Fri30.10.202009:00 - 11:00FH Hörsaal 6 - TPH Methoden d.Theor.Physik UE
Fri06.11.202009:00 - 11:00FH Hörsaal 6 - TPH Methoden d.Theor.Physik UE
Fri08.01.202109:00 - 11:00FH Hörsaal 6 - TPH Methoden d.Theor.Physik UE
Fri15.01.202109:00 - 11:00FH Hörsaal 6 - TPH Methoden d.Theor.Physik UE

Examination modalities

Please see the German page for detailed information.

Group dates

GroupDayTimeDateLocationDescription
Gruppe 1 (Kohorte 1)Fri09:00 - 11:0023.10.2020 - 15.01.2021Sem.R. DA grün 03 A - mündl. Prüfungsraum Mathematik 135.044 UE Mathematical Methods in Physics - Gruppe 1 (Kohorte 1)
Gruppe 2 (Kohorte 1)Fri09:00 - 11:0023.10.2020 - 15.01.2021Sem.R. DA grün 05 135.044 UE Mathematical Methods in Physics - Gruppe 2 (Kohorte 1)
Gruppe 3 (Kohorte 1)Fri09:00 - 11:0023.10.2020 - 15.01.2021Zeichensaal 3 135.044 UE Mathematical Methods in Physics - Gruppe 3 (Kohorte 1)
Gruppe 4 (Kohorte 1)Fri09:00 - 11:0023.10.2020 - 15.01.2021FH Hörsaal 2 135.044 UE Mathematical Methods in Physics - Gruppe 4 (Kohorte 1)
Gruppe 5 (Kohorte 2)Fri09:00 - 11:0016.10.2020 - 08.01.2021Sem.R. DA grün 03 A - mündl. Prüfungsraum Mathematik 135.044 Mathematical Methods in Physics Gruppe 5 (Kohorte 2)
Gruppe 6 (Kohorte 2)Fri09:00 - 11:0016.10.2020 - 08.01.2021Sem.R. DA grün 05 135.044 UE Mathematical Methods in Physics - Gruppe 6 (Kohorte 2)
Gruppe 7 (Kohorte 2)Fri09:00 - 11:0016.10.2020 - 08.01.2021Zeichensaal 3 135.044 UE Mathematical Methods in Physics - Gruppe 7 (Kohorte 2)

Course registration

Use Group Registration to register.

Group Registration

GroupRegistration FromTo
Gruppe 1 (Kohorte 1)01.10.2020 00:0015.10.2020 00:00
Gruppe 2 (Kohorte 1)01.10.2020 00:0015.10.2020 00:00
Gruppe 3 (Kohorte 1)01.10.2020 00:0015.10.2020 00:00
Gruppe 4 (Kohorte 1)05.10.2020 12:0015.10.2020 00:00
Gruppe 5 (Kohorte 2)01.10.2020 00:0015.10.2020 00:00
Gruppe 6 (Kohorte 2)01.10.2020 00:0015.10.2020 00:00
Gruppe 7 (Kohorte 2)01.10.2020 00:0015.10.2020 00:00
Gruppe 8 (Kohorte 3)01.10.2020 00:0015.10.2020 00:00

Curricula

Study CodeSemesterPrecon.Info
033 261 Technical Physics 3. Semester
810 Technical Physics 3. Semester

Literature

Lecture notes for this course are available. Some older assignments [pdf].

Handout: Tensors as multilinear forms (new: with Moebius strip!) [pdf], [ps].

Handout: Selbstadjungierte Differentialoperatoren (von Florian Libisch)[pdf], [ps].

Handout: Fuchssche Klasse (von Volkmar Putz) [gif]

Merkzettel zur Indexschreibweise (von Alexander Haber) [pdf]

Handout: Sturm-Liouville-Problem (von Isabella Floss) [pdf]

Handout: Basistransformation (von Lea Heckmann) [pdf]

Handout:  Greensche Funktion (von Severino Adler) [pdf]

Miscellaneous

Language

German