107.388 Multivariate Statistics
This course is in all assigned curricula part of the STEOP.
This course is in at least 1 assigned curriculum part of the STEOP.

2024W, VO, 3.0h, 4.5EC

Properties

  • Semester hours: 3.0
  • Credits: 4.5
  • Type: VO Lecture
  • Format: Presence

Learning outcomes

After successful completion of the course, students are able to

  • mathematically formulate and apply dimension reduction techniques and methods for linear regression and classification,
  • demonstrate and assess the strengths and weaknesses of the different statistical methods and tools,
  • compute examples using the software environment "R".

Subject of course

Methods like principal component analysis, factor analysis, discriminant analysis and cluster analysis will be explained.

Teaching methods

Examples with data, software environment R

Mode of examination

Oral

Lecturers

Institute

Course dates

DayTimeDateLocationDescription
Wed15:00 - 16:0002.10.2024 - 22.01.2025FH 8 Nöbauer HS - MATH Vorlesung Filzmoser
Thu13:00 - 15:0003.10.2024EI 1 Petritsch HS Vorlesung Filzmoser
Thu13:00 - 15:0017.10.2024 - 23.01.2025EI 1 Petritsch HS Vorlesung Filzmoser
Multivariate Statistics - Single appointments
DayDateTimeLocationDescription
Wed02.10.202415:00 - 16:00FH 8 Nöbauer HS - MATH Vorlesung Filzmoser
Thu03.10.202413:00 - 15:00EI 1 Petritsch HS Vorlesung Filzmoser
Wed16.10.202415:00 - 16:00FH 8 Nöbauer HS - MATH Vorlesung Filzmoser
Thu17.10.202413:00 - 15:00EI 1 Petritsch HS Vorlesung Filzmoser
Wed23.10.202415:00 - 16:00FH 8 Nöbauer HS - MATH Vorlesung Filzmoser
Thu24.10.202413:00 - 15:00EI 1 Petritsch HS Vorlesung Filzmoser
Wed30.10.202415:00 - 16:00FH 8 Nöbauer HS - MATH Vorlesung Filzmoser
Thu31.10.202413:00 - 15:00EI 1 Petritsch HS Vorlesung Filzmoser
Wed06.11.202415:00 - 16:00FH 8 Nöbauer HS - MATH Vorlesung Filzmoser
Thu07.11.202413:00 - 15:00EI 1 Petritsch HS Vorlesung Filzmoser
Wed13.11.202415:00 - 16:00FH 8 Nöbauer HS - MATH Vorlesung Filzmoser
Thu14.11.202413:00 - 15:00EI 1 Petritsch HS Vorlesung Filzmoser
Wed20.11.202415:00 - 16:00FH 8 Nöbauer HS - MATH Vorlesung Filzmoser
Thu21.11.202413:00 - 15:00EI 1 Petritsch HS Vorlesung Filzmoser
Wed27.11.202415:00 - 16:00FH 8 Nöbauer HS - MATH Vorlesung Filzmoser
Thu28.11.202413:00 - 15:00EI 1 Petritsch HS Vorlesung Filzmoser
Wed04.12.202415:00 - 16:00FH 8 Nöbauer HS - MATH Vorlesung Filzmoser
Thu05.12.202413:00 - 15:00EI 1 Petritsch HS Vorlesung Filzmoser
Wed11.12.202415:00 - 16:00FH 8 Nöbauer HS - MATH Vorlesung Filzmoser
Thu12.12.202413:00 - 15:00EI 1 Petritsch HS Vorlesung Filzmoser

Examination modalities

Solving examples in R, oral exam

Exams

DayTimeDateRoomMode of examinationApplication timeApplication modeExam
Thu10:00 - 11:0003.10.2024Sem.R. DA grün 02 C - GEO oral12.09.2024 15:00 - 01.10.2024 23:59TISSOral Presence Exam Multivariate Statistik
Thu11:00 - 12:0003.10.2024Sem.R. DA grün 02 C - GEO oral12.09.2024 15:00 - 01.10.2024 23:59TISSOral Presence Exam Multivariate Statistik

Course registration

Begin End Deregistration end
05.09.2024 12:00 20.10.2024 12:00 20.10.2024 12:00

Curricula

Study CodeObligationSemesterPrecon.Info
033 203 Statistics and Mathematics in Economics Mandatory elective
033 521 Informatics Mandatory elective
033 533 Medical Informatics Mandatory electiveSTEOP
Course requires the completion of the introductory and orientation phase
033 534 Software & Information Engineering Mandatory electiveSTEOP
Course requires the completion of the introductory and orientation phase
066 395 Statistics – Probability – Mathematics in Economics Mandatory elective
066 645 Data Science Not specified
066 926 Business Informatics Mandatory elective
860 GW Optional Courses - Technical Mathematics Not specified

Literature

No lecture notes are available.

Miscellaneous

Language

if required in English