Please be advised: Due to system maintenance the access module is not available for changes, Please accept our apologies for any inconvenience.

107.348 General Regression Models
This course is in all assigned curricula part of the STEOP.
This course is in at least 1 assigned curriculum part of the STEOP.

2020S, UE, 1.0h, 2.0EC
TUWEL

Properties

  • Semester hours: 1.0
  • Credits: 2.0
  • Type: UE Exercise

Learning outcomes

After successful completion of the course, students are able to (i) apply modern regression/statistical learning methods to build predictive models, (ii) select and validate statistical learning models, (iii) assess model fit and error and (iv) use the R language for modern regression and data analysis.

Subject of course

Theoretical and practical examples using R.

Teaching methods

Theoretical and practical examples using R.

Mode of examination

Immanent

Additional information

The prerequisite for the course is 

105.596 VO Econometrics 1: Linear Models

Lecturers

---

Institute

Examination modalities

Continuous assessment via oral examination and regular homework tasks throughout the semester. A data analysis project, that will be presented at the end of the semester, will count for 1/3 of the grade.

Course registration

Begin End Deregistration end
24.02.2020 09:00 31.03.2020 23:59 31.03.2020 23:59

Curricula

Study CodeSemesterPrecon.Info
066 645 Data Science

Literature

No lecture notes are available.

Previous knowledge

Basic probability and statistics; Linear algebra; Econometrics 1: Linear Models.

Preceding courses

Miscellaneous

  • Attendance Required!

Language

English