105.173 Bayesian Statistics
This course is in all assigned curricula part of the STEOP.
This course is in at least 1 assigned curriculum part of the STEOP.

2023W, VU, 3.0h, 5.0EC
TUWEL

Properties

  • Semester hours: 3.0
  • Credits: 5.0
  • Type: VU Lecture and Exercise
  • Format: Presence

Learning outcomes

After successful completion of the course, students are able to learn the foundations of Bayesian inference, as well as a high-level overview of a wide range of other topics. The students will learn the computational tools that will aide them in designing Bayesian models and applying Bayesian methods in the R software.

Subject of course

I. Fundamentals of Bayesian Inference

1.     Probability and inference

2.     Single-parameter models

3.     Multiple-parametermodels

4.     Asymptotics and connections to non-Bayesian approaches

5.     Hierarchical models

 

II. Fundamentals of Bayesian Data Analysis

1.     Model checking

2.     Evaluating, comparing, and expanding models

3.     Modeling accounting for data collection

4.     Decision analysis

 

III. Advance Computation

1.     Introduction to Bayesian computation

2.     Basics of Markov chain simulation

3.     Computationally efficient Markov chain simulation

 

IV. Regression Models (if time allows)

1.     Introduction to regression models

2.     Hierarchical linear models

3.     Generalized linear models

Teaching methods

Most of the course will be taught using lecture slides in conjunction with derivations on board. Aditional parts will be done in computer lab sessions.

Course information and materials, including sylabus and grading policy will be posted in TUWEL.

Two reference books are used:

  • Bayesian Data Analysis. Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A., & Rubin, D.B.(2013). CRCpress

  • The Bayesian Choice: From Decision-Theoretic Foundations to Computational Implementation. Robert, C.P.(2001). Springer Texts in Statistics.

The statistical software we want to use is R. It can be downloaded from the R home page . RStudio offers a GUI R platform.

Mode of examination

Written and oral

Lecturers

Institute

Course dates

DayTimeDateLocationDescription
Wed13:00 - 16:0004.10.2023 - 24.01.2024EI 6 Eckert HS Bayesian Statistics
Bayesian Statistics - Single appointments
DayDateTimeLocationDescription
Wed04.10.202313:00 - 16:00EI 6 Eckert HS Bayesian Statistics
Wed11.10.202313:00 - 16:00EI 6 Eckert HS Bayesian Statistics
Wed18.10.202313:00 - 16:00EI 6 Eckert HS Bayesian Statistics
Wed25.10.202313:00 - 16:00EI 6 Eckert HS Bayesian Statistics
Wed08.11.202313:00 - 16:00EI 6 Eckert HS Bayesian Statistics
Wed22.11.202313:00 - 16:00EI 6 Eckert HS Bayesian Statistics
Wed29.11.202313:00 - 16:00EI 6 Eckert HS Bayesian Statistics
Wed06.12.202313:00 - 16:00EI 6 Eckert HS Bayesian Statistics
Wed13.12.202313:00 - 16:00EI 6 Eckert HS Bayesian Statistics
Wed20.12.202313:00 - 16:00EI 6 Eckert HS Bayesian Statistics
Wed10.01.202413:00 - 16:00EI 6 Eckert HS Bayesian Statistics
Wed17.01.202413:00 - 16:00EI 6 Eckert HS Bayesian Statistics
Wed24.01.202413:00 - 16:00EI 6 Eckert HS Bayesian Statistics

Examination modalities

Proposed grading policy (this can be discuss with students at the beginning of the term)

Data analysis project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30%

Presentation of the project  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20%

Final exam . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50%

Exams

DayTimeDateRoomMode of examinationApplication timeApplication modeExam
Wed13:00 - 16:0029.01.2025Sem.R. DA grün 06A written15.01.2025 12:00 - 23.01.2025 18:00TISSExam Bayesian Statistics
Tue09:00 - 12:0011.02.2025Sem.R. DB gelb 09 written07.02.2024 08:00 - 09.02.2025 18:00TISSExam 2

Course registration

Begin End Deregistration end
01.09.2023 00:00 03.10.2023 00:00 31.10.2023 00:00

Curricula

Study CodeObligationSemesterPrecon.Info
066 395 Statistics and Mathematics in Economics Mandatory
066 645 Data Science Not specified
860 GW Optional Courses - Technical Mathematics Not specified

Literature

No lecture notes are available.

Previous knowledge

Probability and statistics at the level of Applied Mathematical Statistics; Calculus and Linear Algebra.

Language

English