# 105.047 Non life insurance mathematics This course is in all assigned curricula part of the STEOP.\$(function(){PrimeFaces.cw("Tooltip","widget_j_id_20",{id:"j_id_20",showEffect:"fade",hideEffect:"fade",target:"isAllSteop"});});This course is in at least 1 assigned curriculum part of the STEOP.\$(function(){PrimeFaces.cw("Tooltip","widget_j_id_22",{id:"j_id_22",showEffect:"fade",hideEffect:"fade",target:"isAnySteop"});}); 2021S 2020S 2019S 2018S 2017S 2016S 2015S 2014S 2013S 2012S 2011S 2010S 2009S 2008S 2007S 2006S 2005S 2004S

2013S, VO, 3.0h, 4.5EC

## Properties

• Semester hours: 3.0
• Credits: 4.5
• Type: VO Lecture

## Aim of course

The collective risk model plays a central in non-life insurance mathematics. We present different ways to model the arrival process of claims and the claim sizes. We discuss tools for the exploratory statistical data analysis and we illustrate the theoretical methods using real data sets. The second part of the course introduces experience rating, Bayes estimation, and reserving for late claims.

## Subject of course

(I) Collective Risk Models: Homogeneous and inhomogeneous Poisson processes, order statistics property, Poisson random measure, Cramér-Lundberg model, renewal process, mixed Poisson process, order of magnitude of the total claim amount, claim size distributions, heavy- and light-tailed distributions, exploratory statistical analysis with quantile-quantile plots and mean excess plots, regularly varying claim sizes and their aggregation, subexponential distributions, mixture distributions, space-time decomposition of a compound Poisson process, calculation of the distribution of the total claim amount using the extended Panjer recursion, approximation by the central limit theorem or Monte Carlo techniques, reinsurance treaties (II) Experience Rating: Heterogeneity model and Bayes estimation, linear Bayes estimator, credibility estimator, Bühlmann model, Bühlmann-Straub model (III) Reserving for Late Claims: Chain ladder method, grossing-up method, multiplicative model, multinomial model

## Course dates

DayTimeDateLocationDescription
Mon12:00 - 13:0004.03.2013 - 24.06.2013FH Hörsaal 2 .
Thu12:00 - 14:0007.03.2013 - 20.06.2013FH Hörsaal 2 .
Non life insurance mathematics - Single appointments
DayDateTimeLocationDescription
Mon04.03.201312:00 - 13:00FH Hörsaal 2 .
Thu07.03.201312:00 - 14:00FH Hörsaal 2 .
Mon11.03.201312:00 - 13:00FH Hörsaal 2 .
Thu14.03.201312:00 - 14:00FH Hörsaal 2 .
Mon18.03.201312:00 - 13:00FH Hörsaal 2 .
Thu21.03.201312:00 - 14:00FH Hörsaal 2 .
Mon08.04.201312:00 - 13:00FH Hörsaal 2 .
Thu11.04.201312:00 - 14:00FH Hörsaal 2 .
Mon15.04.201312:00 - 13:00FH Hörsaal 2 .
Thu18.04.201312:00 - 14:00FH Hörsaal 2 .
Mon22.04.201312:00 - 13:00FH Hörsaal 2 .
Thu25.04.201312:00 - 14:00FH Hörsaal 2 .
Mon29.04.201312:00 - 13:00FH Hörsaal 2 .
Thu02.05.201312:00 - 14:00FH Hörsaal 2 .
Mon06.05.201312:00 - 13:00FH Hörsaal 2 .
Mon13.05.201312:00 - 13:00FH Hörsaal 2 .
Thu16.05.201312:00 - 14:00FH Hörsaal 2 .
Thu23.05.201312:00 - 14:00FH Hörsaal 2 .
Mon27.05.201312:00 - 13:00FH Hörsaal 2 .
Mon03.06.201312:00 - 13:00FH Hörsaal 2 .

## Examination modalities

Oral and written exam.
The written exam can be taken at one of three dates during the semester. Dates and details can be found here: http://www.fam.tuwien.ac.at/lehre/pr/.

Not necessary

## Literature

Lecture notes for this course are available. Im Sekretariat der Forschungsgruppe FAM erhältlich

• Chapters 1 to 3 as well as 5 and 6 in the book by Thomas Mikosch, Non-Life Insurance Mathematics, An Introduction with Stochastic Processes, Springer Universitext, Springer-Verlag Berlin Heidelberg 2004, ISBN 3-540-40650-6.
• Chapter 11 in the book by Klaus D. Schmidt, Versicherungsmathematik, Springer-Verlag Berlin Heidelberg 2002, ISBN 3-540-42731-7.
• Section 1.3 in the book by Paul Embrechts, Claudia Klüppelberg, Thomas Mikosch: Modelling Extremal Events, Springer-Verlag Berlin Heidelberg New York 1997, ISBN 3-540-60931-8

German