104.580 AKANA AKGEO Curve shortening flow
Diese Lehrveranstaltung ist in allen zugeordneten Curricula Teil der STEOP.
Diese Lehrveranstaltung ist in mindestens einem zugeordneten Curriculum Teil der STEOP.

2020W, VO, 2.0h, 3.0EC

Merkmale

  • Semesterwochenstunden: 2.0
  • ECTS: 3.0
  • Typ: VO Vorlesung
  • Format der Abhaltung: Distance Learning

Lernergebnisse

Nach positiver Absolvierung der Lehrveranstaltung sind Studierende in der Lage grundlegende Techniken und Begriffe, die in der Theorie der geometrischen Flüsse vorkommen, anzuwenden. Zu diesen Techniken gehört das Maximumprinzip, Monotonie/Entropie-Formel, Harnack-Abschätzungen, sogenannte ancient solutions und Singularitätsmodelle.

Inhalt der Lehrveranstaltung

In dieser Vorlesung werden wir eine geometrische Wärmeleitungsgleichung untersuchen, die "curve shortening flow (CSF)" genannt wird. Sei eine einfach geschlossene Kurve in der Euklidischen Ebene gegeben. Der CSF ist ein zeitabhängiger Prozess, der die Kurve verändert, indem Punkte normal zur Kurve mit einer Geschwindigkeit proportional zur Krümmung bewegt werden; Punkte, bei denen die Kurve konvex ist, werden nach innen bewegt, und Punkte, bei denen die Kurve konkav ist, nach aussen. Ein berühmtes Resultat von Grayson besagt, dass CSF jede einfach geschlossene Kurve in einen "runden" Punkt überführt; d.h., die reskalierte Lösung konvergiert gegen einen Kreis, wenn der Zeitparameter gegen den maximalen Parameter konvergiert, bei dem noch Lösungen existieren. In der Vorlesung werde ich einen Beweis dieses Satzes präsentieren und dabei werden die grundlegenden Begriffe der Theorie der Krümmungsflüsse wie das Maximumprinzip, Singularitäten, Harnack-Abschätzungen sowie Entropie-und Monotonie-Abschätzungen präsentiert.

Methoden

Mathematische Definitionen und Beweise.

Prüfungsmodus

Mündlich

Weitere Informationen

Vorbesprechung via Zoom: Montag, 5.10., um 16:45

Join Zoom Meeting
https://tuwien.zoom.us/j/98877698391?pwd=VmNXVHpsVkRKeXN6eUFDSWNjQjhmZz09

Meeting ID: 988 7769 8391
Password: 5ZxsDJ$1

 

Vortragende Personen

Institut

Leistungsnachweis

Mündliche Prüfung

LVA-Anmeldung

Von Bis Abmeldung bis
05.10.2020 18:00

Curricula

StudienkennzahlSemesterAnm.Bed.Info
860 GW Gebundene Wahlfächer - Technische Mathematik

Literatur

Die ersten vier Kapitel des Buches "Extrinsic curvature flows" von Ben Andrews et al.

Link: https://bookstore.ams.org/gsm-206/"

Vorkenntnisse

Grundkenntnisse der Analysis und der gewöhnlichen Differentialgleichung.

 

Sprache

Englisch