104.391 Mathematik 3 für BI
Diese Lehrveranstaltung ist in allen zugeordneten Curricula Teil der STEOP.
Diese Lehrveranstaltung ist in mindestens einem zugeordneten Curriculum Teil der STEOP.

2020W, VU, 3.0h, 4.0EC, wird geblockt abgehalten
TUWEL

Merkmale

  • Semesterwochenstunden: 3.0
  • ECTS: 4.0
  • Typ: VU Vorlesung mit Übung
  • Format der Abhaltung: Distance Learning

Lernergebnisse

Nach positiver Absolvierung der Lehrveranstaltung sind Studierende in der Lage...

  • ... in der Komplexe Funktionentheorie ...
    • ...mithilfe der Cauchy--Riemannschen Differentialgleichungen die komplexe differenzierbarkeit eine Funktion zu überprüfen und konjugiert harmonische Funktionen zu bestimmen.
    • ...komplexe Kurvenintegral mithilfe von Stammfunktionen oder durch Parametrisierung zu berechnen.
    • ...die Polstellen einer komplexen Funktion zu erkennen und zu klassifizieren und das Residuum der Funktion an einer Polstelle zu berechnen.
    • ...mit Hilfe des Residuensatzes komplexe Kurvenintegral zu berechnen.
  • ... in der Vektorraum Theorie von Funktionensystemen ...
    • ... die orthogonale Projektion einer Funktion auf einen Unterraum der von einem Funktionensystem aufgespannt wird zu berechnen.
    • ... die Koeffizienten der Fourierreihen einer Funktion zu berechnen.
    • ... den Grenzwert der Fourierreihe an einer festen Stelle mithilfe des Satztes von Dirichlet zu bestimmen.
  • ... in der Theorie der Integraltransformationen ...
    • ... die Laplacetransformation einer Funktion, anhand der Definition und mithilfe der grundlegende Eigenschaften (Linearität, Ähnlichkeit, Ableitung, Integration, Verschiebung, ...) der Laplacetransformation, zu bestimmen.
    • ... die Inversion der Laplacetransformation mithilfe der komplexen Inversionsformel und dem Residuuensatz zu berechnen.
    • ... Anfangswertprobleme mithilfe der Laplacetransformation zu lösen.
    • ... die Fouriertransformation und inverse Fouriertransformation, anhand der Definition und mithilfe der grundlegenden Eigenschaften (Linearität, Ähnlichkeit, Ableitung, Verschiebung, ...) der Fouriertransformation, zu bestimmen.
  • ... in der Theorie der linearen partiellen Differentialgleichungen ...
    • ... eine gegeben lineare partielle Differentialgleichung zu klassifizieren (Ordnung, Koeffizienten, homogen oder inhomogen, Typ,...)
    • ... eine möglichst allgemeine Lösung für ein gegeben lineare partielle Differentialgleichung 1. Ordnung mithilfe der Methode der Charakteristiken zu bestimmen.
    • ... eine möglichst allgemeine Lösung für die klassischen homogenen linearen partiellen Differentialgleichungen 2. Ordnung mit konstanten Koeffizienten (Potentialgleichung, Wärmeleitungsgleichung, Schwingungsgleichung,...) mithilfe des Sperationsansatzes zu berechnen und diese allgemeine Lösung mithilfe der Theorie der Fourierreichen an gegeben Randwerte anzupassen.

Inhalt der Lehrveranstaltung

Laplace- und Fouriertransformation, Funktionentheorie, Fourierreihen, Partielle Differentialgleichungen

Methoden

Vorlesung mit Übung; siehe weitere Informationen

Prüfungsmodus

Prüfungsimmanent

Weitere Informationen

Vorlesung:

Die Vorlesung findet online statt. Weiter Informationen finden Sie auf der zugehörigen Kursseite im TUWEL.

Übung:

Die Übungen finden ebenfalls online statt. Alle Informationen finden Sie auf der Kursseite für die Übung im TUWEL.

Übungstests und mündliche Prüfung:

Wenn Sie nach dem 2. Übungstest die Mindestvoraussetzungen erfüllen, können Sie sich für die mündliche Prüfung zum Vorlesungsteil der Lehrveranstalltung anmelden. Zugangsvoraussetzung für die mündliche Prüfung sind mindestenes 40% der zusammengerechneten Testpunkte. Die Gesamtnote wird in der mündlichen Prüfung auf Basis Ihrer Test- und Übungsleistung ermittelt.

Vortragende

Institut

Leistungsnachweis

schiftliche Prüfung

LVA-Anmeldung

Von Bis Abmeldung bis
15.09.2020 09:00 14.10.2020 12:00 14.10.2020 12:00

Curricula

StudienkennzahlSemesterAnm.Bed.Info
066 505 Bauingenieurwissenschaften

Literatur

Ein Skriptum zur Vorlesung ist im Grafischen Zentrum erhältlich.

Vorkenntnisse

Integral- und Differentialrechnung, gewöhnliche Differentialgleichungen, Vektorräume

Weitere Informationen

  • Anwesenheitspflicht!

Sprache

Deutsch