# 101.963 AKNUM, AKMOD Frames and Frametheory This course is in all assigned curricula part of the STEOP.\$(function(){PrimeFaces.cw("Tooltip","widget_j_id_21",{id:"j_id_21",showEffect:"fade",hideEffect:"fade",target:"isAllSteop"});});This course is in at least 1 assigned curriculum part of the STEOP.\$(function(){PrimeFaces.cw("Tooltip","widget_j_id_23",{id:"j_id_23",showEffect:"fade",hideEffect:"fade",target:"isAnySteop"});}); 2022W

2022W, VO, 2.0h, 3.0EC

## Properties

• Semester hours: 2.0
• Credits: 3.0
• Type: VO Lecture
• Format: Presence

## Learning outcomes

After successful completion of the course, students are able to understand the basic concept of frames. Based on examples from practical application they will recognize the connection between (Gabor)frames and the Fouriertransform and understand the role of frames in signal analysis.

## Subject of course

Although the first papers dealing with frames date back to the 1950s, the concept of frames and redundancy is relatively unknown in fields outside signal processing, which is interesting, because they provide the theoretical background for many algorithms that we use every day, e.g., when using phones or when we analyse music.

In a nutshell: Frames are (redundant) generating sets with special properties that allow the representation of elements of a (possibly infinite dimensional) vector space as a linear combination of frame elements. In that sense, frames are a generalization of orthogonal bases, but in contrast to bases a representation using frames is not unique anymore. This redundancy, however, allows more flexibility in constructing frames with special properties, e.g., such that the representation becomes more robust with respect to errors and noise, or that the representation using frames allows for an easier manipulation of elements of the vector space.

In the lecture we want to introduce frames in a finite dimensional as well as a infinite dimensional setting, we will introduce some of their properties and the theory behind frames. We also describe some examples where frames play an important role, e.g., Spectrogramms to analyse music and speech or frame-multipliers to manipulate signals (catchphrase: Photoshop for signals).

## Teaching methods

Lecture with examples from acoustics

Oral

## Course dates

DayTimeDateLocationDescription
Thu12:00 - 14:0013.10.2022 - 26.01.2023Sem.R. DA grün 04 Vorlesungstermin
Thu12:00 - 14:0022.12.2022 Seminarroom ISF, ÖAW, Ground Floor, Wohllebengasse 12-14, 1040 WienLecture + Recording
AKNUM, AKMOD Frames and Frametheory - Single appointments
DayDateTimeLocationDescription
Thu13.10.202212:00 - 14:00Sem.R. DA grün 04 Vorlesungstermin
Thu20.10.202212:00 - 14:00Sem.R. DA grün 04 Vorlesungstermin
Thu27.10.202212:00 - 14:00Sem.R. DA grün 04 Vorlesungstermin
Thu03.11.202212:00 - 14:00Sem.R. DA grün 04 Vorlesungstermin
Thu10.11.202212:00 - 14:00Sem.R. DA grün 04 Vorlesungstermin
Thu17.11.202212:00 - 14:00Sem.R. DA grün 04 Vorlesungstermin
Thu24.11.202212:00 - 14:00Sem.R. DA grün 04 Vorlesungstermin
Thu01.12.202212:00 - 14:00Sem.R. DA grün 04 Vorlesungstermin
Thu15.12.202212:00 - 14:00Sem.R. DA grün 04 Vorlesungstermin
Thu22.12.202212:00 - 14:00 Seminarroom ISF, ÖAW, Ground Floor, Wohllebengasse 12-14, 1040 WienLecture + Recording
Thu12.01.202312:00 - 14:00Sem.R. DA grün 04 Vorlesungstermin
Thu19.01.202312:00 - 14:00Sem.R. DA grün 04 Vorlesungstermin
Thu26.01.202312:00 - 14:00Sem.R. DA grün 04 Vorlesungstermin

Oral exam

## Exams

DayTimeDateRoomMode of examinationApplication timeApplication modeExam
Thu10:00 - 11:0009.02.2023Sem.R. DA grün 04 oralno application-Prüfung Frames

Not necessary

## Previous knowledge

Basic knowledge of linear algebra is assumed.

## Language

if required in English