101.696 AKNUM Maschinelles Lernen
Diese Lehrveranstaltung ist in allen zugeordneten Curricula Teil der STEOP.
Diese Lehrveranstaltung ist in mindestens einem zugeordneten Curriculum Teil der STEOP.

2021W, SE, 2.0h, 3.0EC

Merkmale

  • Semesterwochenstunden: 2.0
  • ECTS: 3.0
  • Typ: SE Seminar
  • Format der Abhaltung: Distance Learning

Lernergebnisse

Nach positiver Absolvierung der Lehrveranstaltung sind Studierende in der Lage eigenständig Literatursuche durchzuführen, Seminararbeiten mit dem LaTeX-Textsatzsystem zu verfassen und Präsentationen (45 Minuten) vorzubereiten und zu halten.

Inhalt der Lehrveranstaltung

  • Aktuelle Themen des Supervised learning
  • Aktuelle Themen des Unsupervised learning
  • Generative adversarial networks (GAN)
  • Reinforcement learning: verschiedene Themen
  • Reinforcement learning: Atari, Go, etc.
  • Neuronale Netze, Deep learning
  • Bayessche Schätzung (für part. Diff.gl.): numerische Algorithmen
  • Bayessche Schätzung (für part. Diff.gl.): Theorie
  • Bildklassifizierung
  • Autonomes Fahren
  • Etc.

Methoden

Supervised machine learning, unsupervised machine learning, reinforcement learning.

Prüfungsmodus

Schriftlich und Mündlich

Weitere Informationen

Beachten Sie beim Verfassen der Ausarbeitung bitte die Richtlinie der TU Wien zum Umgang mit Plagiaten: Leitfaden zum Umgang mit Plagiaten (PDF)

Vortragende Personen

Institut

Leistungsnachweis

Seminararbeit und Seminarpräsentation.

LVA-Anmeldung

Nicht erforderlich

Curricula

StudienkennzahlSemesterAnm.Bed.Info
860 GW Gebundene Wahlfächer - Technische Mathematik

Literatur

Es wird kein Skriptum zur Lehrveranstaltung angeboten.

Vorkenntnisse

Lineare Algebra, Analysis.

Sprache

bei Bedarf in Englisch