101.672 Introduction to working mathematically This course is in all assigned curricula part of the STEOP.
This course is in all assigned curricula part of the STEOP.
This course is in at least 1 assigned curriculum part of the STEOP.

2023S, VU, 1.0h, 1.0EC

Properties

  • Semester hours: 1.0
  • Credits: 1.0
  • Type: VU Lecture and Exercise
  • Format: Presence

Learning outcomes

After successful completion of the course, students are able to apply basic principles of mathematical thinking (axioms, statements, proofs), which give an elementary introduction to the studies of mathematics.

 

Subject of course

Logical arguing, relations and functions, natural numbers

Teaching methods

The principles of mathematical thinking are demonstrated with a few basic notions and theorems (relations and functions, natural numbers) during the blackboard lecture.

Mode of examination

Immanent

Additional information

NOTE THE INFORMATION ON THE WEBSITE OF THE LECTURE !

Lecturers

Institute

Course dates

DayTimeDateLocationDescription
Wed12:00 - 15:0001.03.2023EI 8 Pötzl HS - QUER VO EIMA
Wed16:00 - 18:0001.03.2023HS 14A Günther Feuerstein VO EIMA
Thu12:00 - 16:0002.03.2023EI 4 Reithoffer HS VO EIMA
Tue12:00 - 14:0007.03.2023EI 8 Pötzl HS - QUER VO EIMA
Wed12:00 - 15:0008.03.2023EI 8 Pötzl HS - QUER VO EIMA

Examination modalities

Participation in the exercise part.

Course registration

Not necessary

Curricula

Study CodeObligationSemesterPrecon.Info
033 201 Technical Mathematics Mandatory1. Semestertrue
Course belongs to the introductory and orientation phase ("Studieneingangs- und Orientierungsphase")
033 203 Statistics and Mathematics in Economics Mandatory1. Semestertrue
Course belongs to the introductory and orientation phase ("Studieneingangs- und Orientierungsphase")
033 205 Financial and Actuarial Mathematics Mandatory1. Semestertrue
Course belongs to the introductory and orientation phase ("Studieneingangs- und Orientierungsphase")

Literature

Das Skriptum zur Vorlesung ist im zugehörigen TUWEL Kurs runterladbar.

Empfehlenswerte weiterführende Literatur:

  • Kevin Houston, ‘How to think like a mathematician’
  • Daniel J. Velleman, ‘How to prove it. A structured approach’

Miscellaneous

Language

German