# 101.440 Specialisation - Mathematics (Selected Topics) This course is in all assigned curricula part of the STEOP.\$(function(){PrimeFaces.cw("Tooltip","widget_j_id_21",{id:"j_id_21",showEffect:"fade",hideEffect:"fade",target:"isAllSteop"});});This course is in at least 1 assigned curriculum part of the STEOP.\$(function(){PrimeFaces.cw("Tooltip","widget_j_id_23",{id:"j_id_23",showEffect:"fade",hideEffect:"fade",target:"isAnySteop"});}); 2024S 2023S 2022S 2021S 2020S 2019S 2018S 2017S 2016S 2015S 2014S 2013S 2012S

2023S, VU, 4.0h, 5.0EC

## Properties

• Semester hours: 4.0
• Credits: 5.0
• Type: VU Lecture and Exercise
• Format: Presence

## Learning outcomes

After successful completion of the course, students are able to numerically solve linear equation systems directly and iteratively. Students know to set up boundary and initial boundary value problems in principle and in particular for Maxwell’s equations and to solve them approximately by means of the finite difference method to some extent. Furthermore, students are essentially able to derive the weak formulation of simple boundary value problems and to find an approximate solution either by implementing an own computer code of the finite element method for instance in Python or by using Netgen/NGSolve (Open Source Software) to model and simulate problems in electrical engineering and to carry out a validity check.

## Subject of course

Linear equation systems, introduction to partial differential equations, their classification and some essential properties, establishing the initial boundary and boundary value problems based on Maxwell’s equations, discussion of the practical relevance, approximate solution with the finite difference method, method of weighted residuals, idea of the finite element method, derivation of the weak formulation, assembling of the finite element equation systems using hat functions, weak formulations based on a scalar potential and on a vector potential in the context of the Maxwell’s equations, construction of finite element bases for the Sobolev spaces H^1 and H(curl).

## Teaching methods

Some simple algorithms are to be implemented in the associated exercises. Small but relevant problems in electrical engineering will be solved using Netgen/NGSolve. To this end partly prepared examples in Python will be provided, which have to be completed or extended.

Written and oral

## Course dates

DayTimeDateLocationDescription
Wed15:00 - 16:0001.03.2023Sem.R. DA grün 04 Vorbesprechung
Mon15:00 - 17:0006.03.2023 - 26.06.2023Sem.R. DA grün 04 Vorlesung
Tue15:00 - 17:0007.03.2023 - 27.06.2023Sem.R. DB gelb 03 Vorlesung
Fri09:00 - 11:0005.05.2023FH Hörsaal 7 - GEO Ersatztermin
Fri09:00 - 11:0012.05.2023FH Hörsaal 6 - TPH Ersatztermin
Fri09:00 - 11:0023.06.2023FH Hörsaal 6 - TPH Ersatztermin
Specialisation - Mathematics (Selected Topics) - Single appointments
DayDateTimeLocationDescription
Wed01.03.202315:00 - 16:00Sem.R. DA grün 04 Vorbesprechung
Mon06.03.202315:00 - 17:00Sem.R. DA grün 04 Vorlesung
Tue07.03.202315:00 - 17:00Sem.R. DB gelb 03 Vorlesung
Mon13.03.202315:00 - 17:00Sem.R. DA grün 04 Vorlesung
Tue14.03.202315:00 - 17:00Sem.R. DB gelb 03 Vorlesung
Mon20.03.202315:00 - 17:00Sem.R. DA grün 04 Vorlesung
Tue21.03.202315:00 - 17:00Sem.R. DB gelb 03 Vorlesung
Mon27.03.202315:00 - 17:00Sem.R. DA grün 04 Vorlesung
Tue28.03.202315:00 - 17:00Sem.R. DB gelb 03 Vorlesung
Mon17.04.202315:00 - 17:00Sem.R. DA grün 04 Vorlesung
Tue18.04.202315:00 - 17:00Sem.R. DB gelb 03 Vorlesung
Mon24.04.202315:00 - 17:00Sem.R. DA grün 04 Vorlesung
Tue25.04.202315:00 - 17:00Sem.R. DB gelb 03 Vorlesung
Tue02.05.202315:00 - 17:00Sem.R. DB gelb 03 Vorlesung
Fri05.05.202309:00 - 11:00FH Hörsaal 7 - GEO Ersatztermin
Mon08.05.202315:00 - 17:00Sem.R. DA grün 04 Vorlesung
Tue09.05.202315:00 - 17:00Sem.R. DB gelb 03 Vorlesung
Fri12.05.202309:00 - 11:00FH Hörsaal 6 - TPH Ersatztermin
Mon15.05.202315:00 - 17:00Sem.R. DA grün 04 Vorlesung
Tue16.05.202315:00 - 17:00Sem.R. DB gelb 03 Vorlesung

## Examination modalities

In small groups of 2 or 3 students mathematical exercises have to be solved, simple algorithms have to be implemented and analyzed and simulation exercises have to be carried out and the results discussed. One protocol has to be prepared together by the group.

## Course registration

Begin End Deregistration end
01.03.2023 00:00 01.04.2023 13:00 07.04.2023 13:00

## Group Registration

GroupRegistration FromTo
Gruppe 101.03.2023 00:0028.03.2023 01:00
Gruppe 201.03.2023 00:0028.03.2023 01:00
Gruppe 301.03.2023 00:0028.03.2023 01:00
Gruppe 401.03.2023 00:0028.03.2023 00:00
Gruppe 501.03.2023 00:0031.03.2023 00:00
Gruppe 601.03.2023 00:0031.03.2023 00:00
Gruppe 701.03.2023 00:0031.03.2023 00:00
Gruppe 801.03.2023 00:0031.03.2023 00:00

## Curricula

Study CodeObligationSemesterPrecon.Info
033 235 Electrical Engineering and Information Technology Mandatory elective

## Literature

Skript is available

## Previous knowledge

Calculus, Ordinary Differential Equations and Linear Algebra

German