101.440 Specialisation - Mathematics (Selected Topics)
This course is in all assigned curricula part of the STEOP.
This course is in at least 1 assigned curriculum part of the STEOP.

2021S, VU, 4.0h, 5.0EC

Properties

  • Semester hours: 4.0
  • Credits: 5.0
  • Type: VU Lecture and Exercise
  • Format: Online

Learning outcomes

After successful completion of the course, students are able to solve basic numerical problems like linear systems, linear regression, interpolation and numerical integration. Students know to set up boundary and initial boundary value problems in principle and in particular for Maxwell’s equations and to solve them approximately by means of the finite difference method to some extent. Furthermore, students are essentially able to derive the weak formulation of simple boundary value problems and to find an approximate solution either by implementing an own computer code of the finite element method for instance in Python or by using Netgen/NGSolve (Open Source Software) to model and simulate problems in electrical engineering and to carry out a validity check.

Subject of course

Linear equation systems, linear regression, interpolation, numerical integration, introduction to partial differential equations, their classification and some essential properties, establishing the initial boundary and boundary value problems based on Maxwell’s equations, discussion of the practical relevance, approximate solution with the finite difference method, method of weighted residuals, idea of the finite element method, derivation of the weak formulation, assembling of the finite element equation systems using hat functions, weak formulations based on a scalar potential and on a vector potential in the context of the Maxwell’s equations, construction of finite element bases for the Sobolev spaces H^1 and H(curl).

Teaching methods

Some simple algorithms are to be implemented in the associated exercises. Small but relevant problems in electrical engineering will be solved using Netgen/NGSolve. To this end partly prepared examples in Python will be provided, which have to be completed or extended.

Mode of examination

Written and oral

Lecturers

Institute

Course dates

DayTimeDateLocationDescription
Mon15:00 - 15:3001.03.2021 (LIVE)Preliminary Discussion
Mon15:00 - 16:3001.03.2021 - 28.06.2021 VU
Tue15:00 - 16:3002.03.2021 - 29.06.2021 VU
Specialisation - Mathematics (Selected Topics) - Single appointments
DayDateTimeLocationDescription
Mon01.03.202115:00 - 15:30 Preliminary Discussion
Mon01.03.202115:00 - 16:30 VU
Tue02.03.202115:00 - 16:30 VU
Mon08.03.202115:00 - 16:30 VU
Tue09.03.202115:00 - 16:30 VU
Mon15.03.202115:00 - 16:30 VU
Tue16.03.202115:00 - 16:30 VU
Mon22.03.202115:00 - 16:30 VU
Tue23.03.202115:00 - 16:30 VU
Mon12.04.202115:00 - 16:30 VU
Tue13.04.202115:00 - 16:30 VU
Mon19.04.202115:00 - 16:30 VU
Tue20.04.202115:00 - 16:30 VU
Mon26.04.202115:00 - 16:30 VU
Tue27.04.202115:00 - 16:30 VU
Mon03.05.202115:00 - 16:30 VU
Tue04.05.202115:00 - 16:30 VU
Mon10.05.202115:00 - 16:30 VU
Tue11.05.202115:00 - 16:30 VU
Mon17.05.202115:00 - 16:30 VU

Examination modalities

In small groups of 2 or 3 students mathematical exercises have to be solved, simple algorithms have to be implemented and analyzed and simulation exercises have to be carried out and the results discussed. One protocol has to be prepared together by the group.

Course registration

Begin End Deregistration end
01.03.2021 00:00 26.03.2021 12:00 26.03.2021 12:00

Group Registration

GroupRegistration FromTo
Gruppe 101.03.2021 00:0023.03.2021 00:00
Gruppe 201.03.2021 00:0023.03.2021 00:00
Gruppe 301.03.2021 00:0023.03.2021 00:00

Curricula

Study CodeObligationSemesterPrecon.Info
033 235 Electrical Engineering and Information Technology Mandatory elective

Literature

Skript is available

Previous knowledge

Calculus, Ordinary Differential Equations and Linear Algebra

 

Preceding courses

Continuative courses

Language

German