Student-Self-Service availability is currently restricted due to technical difficulties. Please accept our apologies for any inconvenience.

101.325 Variational Calculus
This course is in all assigned curricula part of the STEOP.
This course is in at least 1 assigned curriculum part of the STEOP.

2022S, VO, 3.0h, 4.5EC
TUWEL

Properties

  • Semester hours: 3.0
  • Credits: 4.5
  • Type: VO Lecture
  • Format: Presence

Learning outcomes

After successful completion of the course, students are able to analyze or "solve" typical problems in calculus of variations. Moreover, they will know techniques from Gamma-convergence, homogenization and Young measures.

Subject of course

classical examples (catenary curve, minimal surfaces), Euler-Lagrange equation, classical solution theory (via differential equations, "indirect method"), existence and uniqueness theory ("direct solution method", Tonelli's program), constrained problems, obstacle problems, variational inequalities, non-convex functionals, saddle point problems

Teaching methods

Presentation of the course material as a video based on the lecture notes; or VO in the lecture room.

Mode of examination

Oral

Additional information

The links to the videos of the course will be made available in Tuwel.

The course starts on Tuesday, 1.3.; on 3.3. there will be an additional VO during the exercise time (15:15-16:00) in Sem green 05; also on 10.3.: 15:15-16:00 in Sem green 03A

Lecturers

Institute

Course dates

DayTimeDateLocationDescription
Tue09:00 - 11:0001.03.2022 - 28.06.2022Sem.R. DA grün 03 B VO Calculus of variations
Wed10:00 - 12:0002.03.2022 - 29.06.2022Sem.R. DB gelb 05 A VO Calculus of variations
Variational Calculus - Single appointments
DayDateTimeLocationDescription
Tue01.03.202209:00 - 11:00Sem.R. DA grün 03 B VO Calculus of variations
Wed02.03.202210:00 - 12:00Sem.R. DB gelb 05 A VO Calculus of variations
Tue08.03.202209:00 - 11:00Sem.R. DA grün 03 B VO Calculus of variations
Wed09.03.202210:00 - 12:00Sem.R. DB gelb 05 A VO Calculus of variations
Tue15.03.202209:00 - 11:00Sem.R. DA grün 03 B VO Calculus of variations
Wed16.03.202210:00 - 12:00Sem.R. DB gelb 05 A VO Calculus of variations
Tue22.03.202209:00 - 11:00Sem.R. DA grün 03 B VO Calculus of variations
Wed23.03.202210:00 - 12:00Sem.R. DB gelb 05 A VO Calculus of variations
Tue29.03.202209:00 - 11:00Sem.R. DA grün 03 B VO Calculus of variations
Wed30.03.202210:00 - 12:00Sem.R. DB gelb 05 A VO Calculus of variations
Tue05.04.202209:00 - 11:00Sem.R. DA grün 03 B VO Calculus of variations
Wed06.04.202210:00 - 12:00Sem.R. DB gelb 05 A VO Calculus of variations
Tue26.04.202209:00 - 11:00Sem.R. DA grün 03 B VO Calculus of variations
Wed27.04.202210:00 - 12:00Sem.R. DB gelb 05 A VO Calculus of variations
Tue03.05.202209:00 - 11:00Sem.R. DA grün 03 B VO Calculus of variations
Wed04.05.202210:00 - 12:00Sem.R. DB gelb 05 A VO Calculus of variations
Tue10.05.202209:00 - 11:00Sem.R. DA grün 03 B VO Calculus of variations
Wed11.05.202210:00 - 12:00Sem.R. DB gelb 05 A VO Calculus of variations
Tue17.05.202209:00 - 11:00Sem.R. DA grün 03 B VO Calculus of variations
Wed18.05.202210:00 - 12:00Sem.R. DB gelb 05 A VO Calculus of variations

Examination modalities

final oral exam (about 30-40')

Course registration

Not necessary

Curricula

Literature

Lecture notes for this course are available. lecture notes see: http://www.math.tuwien.ac.at/~arnold/lehre/index.html

Previous knowledge

partial differential equations, functional analysis

Language

German